Example #1
0
def update_eval_metrics(preds, labels, eval_metrics):

    if len(labels.shape) == 2:
        preds = np.expand_dims(preds, axis=0)
        labels = np.expand_dims(labels, axis=0)

    N = labels.shape[0]

    for i in range(N):
        pred = preds[i, :, :]
        label = labels[i, :, :]
        eval_metrics['dice score'].append(dc(pred, label))
        eval_metrics['precision'].append(precision(pred, label))
        eval_metrics['recall'].append(recall(pred, label))
        eval_metrics['sensitivity'].append(sensitivity(pred, label))
        eval_metrics['specificity'].append(specificity(pred, label))

        if np.sum(pred) > 0 and np.sum(label) > 0:
            eval_metrics['hausdorff'].append(hd(pred, label))
            eval_metrics['hausdorff 95%'].append(hd95(pred, label))
            eval_metrics['asd'].append(asd(pred, label))
            eval_metrics['assd'].append(assd(pred, label))
            eval_metrics['jaccard'].append(jc(pred, label))
        else:
            eval_metrics['hausdorff'].append('nan')
            eval_metrics['hausdorff 95%'].append('nan')
            eval_metrics['asd'].append('nan')
            eval_metrics['assd'].append('nan')
            eval_metrics['jaccard'].append('nan')

    return eval_metrics
def get_score(truth, prediction, masking_functions):
    score = list()
    dice_score = [dc(func(truth), func(prediction))
                  for func in masking_functions]
    # hd_score = [hd(func(truth), func(prediction))
    #             for func in masking_functions]
    sensitivity_score = [sensitivity(func(truth), func(prediction))
                         for func in masking_functions]
    specificity_score = [specificity(func(truth), func(prediction))
                         for func in masking_functions]
    score.extend(dice_score)
    # score.extend(sensitivity_score)
    # score.extend(specificity_score)
    return score
def binary_measures_numpy(result, target, binary_threshold=0.5):
    result_binary = (result > binary_threshold).astype(numpy.uint8)
    target_binary = (target > binary_threshold).astype(numpy.uint8)

    result = BinaryMeasuresDto(mpm.dc(result_binary, target_binary), numpy.Inf,
                               numpy.Inf,
                               mpm.precision(result_binary, target_binary),
                               mpm.sensitivity(result_binary, target_binary),
                               mpm.specificity(result_binary, target_binary))

    if result_binary.any() and target_binary.any():
        result.hd = mpm.hd(result_binary, target_binary)
        result.assd = mpm.assd(result_binary, target_binary)

    return result
Example #4
0
def compute_scores(preds, labels):
    preds_data = preds.data.cpu().numpy()
    labels_data = labels.data.cpu().numpy()

    dice_score = dc(preds_data, labels_data)
    jaccard_coef = jc(preds_data, labels_data)
    hausdorff_dist = hd(preds_data, labels_data)
    asd_score = asd(preds_data, labels_data)
    assd_score = assd(preds_data, labels_data)
    precision_value = precision(preds_data, labels_data)
    recall_value = recall(preds_data, labels_data)
    sensitivity_value = sensitivity(preds_data, labels_data)
    specificity_value = specificity(preds_data, labels_data)
    return {
        'dice score': dice_score,
        'jaccard': jaccard_coef,
        'hausdorff': hausdorff_dist,
        'asd': asd_score,
        'assd': assd_score,
        'precision': precision_value,
        'recall': recall_value,
        'sensitivity': sensitivity_value,
        'specificity': specificity_value
    }
Example #5
0
    # non_zero_count = np.count_nonzero(lab)
    # ratio = non_zero_count / (lab.shape[0] * lab.shape[1])
    # print(ratio)

    input = Variable(
        torch.from_numpy(img).type('torch.FloatTensor').cuda(gpu_id))
    res = fcn(input).detach().cpu().numpy()
    # res =res/res.max()
    # res = (res-1)/res.max()

    ret, res = cv2.threshold(res[0, 0, :, :], 0.8, 1, cv2.THRESH_BINARY)
    # res = res[0,0,:,:]
    dice = dc(lab, res)
    jaccard = jc(lab, res)
    sens = sensitivity(lab, res)
    spec = specificity(lab, res)
    pres = precision(lab, res)
    rec = recall(lab, res)

    print('dice:', dice)
    print('jaccad:', jaccard)
    print('sensitivity:', sens)
    print('precision:', pres)

    dc_list.append(dice)
    jc_list.append(jaccard)
    sens_list.append(sens)
    spec_list.append(spec)
    pres_list.append(pres)
    recall_list.append(rec)
Example #6
0
    
    metricsDir = './{}/metrics/'.format(dataset, indexName)
    if not os.path.exists(metricsDir):
        os.makedirs(metricsDir)

    outputMetrics = metricsDir + '{}.csv'.format(indexName)
    filenames = glob.glob("./{}/cortadas/labels/*.tif".format(dataset))
    
    with open(outputMetrics, 'w') as csvfile:
        
        fieldNames = ['Image', 'Dice', 'Jaccard', 'Precision', 'Recall', 'Sensitivity', 'Specificity']    
        writer = csv.writer(csvfile, delimiter=";")
        writer.writerow(fieldNames)

        for maskFileName in filenames:

            fileName = maskFileName.replace('./{}/cortadas/labels/'.format(dataset), '')
            mask = cv2.imread(maskFileName, cv2.IMREAD_COLOR)
            processed = cv2.imread(processedDir + fileName, cv2.IMREAD_COLOR)

            dc = str(mbin.dc(mask, processed)).replace(".", ",")
            jc = str(mbin.jc(mask, processed)).replace(".", ",")

            precision = str(mbin.precision(processed, mask)).replace(".", ",")
            recall = str(mbin.recall(processed, mask)).replace(".", ",")
            
            sensitivity = str(mbin.sensitivity(processed, mask)).replace(".", ",")
            specificity = str(mbin.specificity(processed, mask)).replace(".", ",")

            writer.writerow([fileName, dc, jc, precision, recall, sensitivity, specificity])