Example #1
0
def calculate_metric_percase(pred, gt, num_classes):
    "二分类、多分类的指标统计"
    if num_classes is None:
        num_classes = len(np.unique(gt))#注意:gt不是onehot编码
    print('np.unique(gt):',np.unique(gt))
    if num_classes==2:
        dice = metric.binary.dc(pred, gt)
        jc = metric.binary.jc(pred, gt)
        hd = metric.binary.hd95(pred, gt)
        asd = metric.binary.asd(pred, gt)
    elif num_classes>2:
        gt_onehot = to_categorical(gt, num_classes)
        pred_onehot = to_categorical(pred, num_classes)
        dice = []
        jc = []
        hd = []
        asd = []
        for k in range(num_classes):
            pred_k = pred_onehot[...,k]
            gt_k = gt_onehot[...,k]
            dice +=  [metric.dc(result=pred_k, reference=gt_k)]
            jc += [metric.jc(result=pred_k, reference=gt_k)]
            hd += [metric.hd95(result=pred_k, reference=gt_k)]
            asd += [metric.asd(result=pred_k, reference=gt_k)]
    else:
        raise ValueError("pred和gt不能是onehot编码")
    return dice, jc, hd, asd
 def calculate_metrics(mask1, mask2):
     true_positives = metric.obj_tpr(mask1, mask2)
     false_positives = metric.obj_fpr(mask1, mask2)
     dc = metric.dc(mask1, mask2)
     hd = metric.hd(mask1, mask2)
     precision = metric.precision(mask1, mask2)
     recall = metric.recall(mask1, mask2)
     ravd = metric.ravd(mask1, mask2)
     assd = metric.assd(mask1, mask2)
     asd = metric.asd(mask1, mask2)
     return true_positives, false_positives, dc, hd, precision, recall, ravd, assd, asd
 def calculate_metrics(mask1, mask2):
     true_positives = metric.obj_tpr(mask1, mask2)
     false_positives = metric.obj_fpr(mask1, mask2)
     dc = metric.dc(mask1, mask2)
     hd = metric.hd(mask1, mask2)
     precision = metric.precision(mask1, mask2)
     recall = metric.recall(mask1, mask2)
     ravd = metric.ravd(mask1, mask2)
     assd = metric.assd(mask1, mask2)
     asd = metric.asd(mask1, mask2)
     return true_positives, false_positives, dc, hd, precision, recall, ravd, assd, asd
Example #4
0
def avg_surface_distance(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, voxel_spacing=None, connectivity=1, **kwargs):

    if confusion_matrix is None:
        confusion_matrix = ConfusionMatrix(test, reference)

    test_empty, test_full, reference_empty, reference_full = confusion_matrix.get_existence()

    if test_empty or test_full or reference_empty or reference_full:
        if nan_for_nonexisting:
            return float("NaN")
        else:
            return 0

    test, reference = confusion_matrix.test, confusion_matrix.reference

    return metric.asd(test, reference, voxel_spacing, connectivity)
Example #5
0
def calculate_validation_metrics(probas_pred,
                                 image_gt,
                                 class_labels=None,
                                 num_classes=5):
    classes = np.arange(probas_pred.shape[-1])
    # determine valid classes (those that actually appear in image_gt). Some images may miss some classes
    classes = [c for c in classes if np.sum(image_gt == c) != 0]
    image_pred = probas_pred.argmax(-1)
    assert image_gt.shape == image_pred.shape
    accuracy = np.sum(image_gt == image_pred) / float(image_pred.size)
    class_metrics = {}
    y_true = convert_seg_flat_to_binary_label_indicator_array(
        image_gt.ravel(), num_classes).astype(int)[:, classes]
    y_pred = probas_pred.transpose(3, 0, 1,
                                   2).reshape(num_classes,
                                              -1).transpose(1, 0)[:, classes]
    scores = roc_auc_score(y_true, y_pred, None)
    for i, c in enumerate(classes):
        true_positives = metric.obj_tpr(image_gt == c, image_pred == c)
        false_positives = metric.obj_fpr(image_gt == c, image_pred == c)
        dc = metric.dc(image_gt == c, image_pred == c)
        hd = metric.hd(image_gt == c, image_pred == c)
        precision = metric.precision(image_gt == c, image_pred == c)
        recall = metric.recall(image_gt == c, image_pred == c)
        ravd = metric.ravd(image_gt == c, image_pred == c)
        assd = metric.assd(image_gt == c, image_pred == c)
        asd = metric.asd(image_gt == c, image_pred == c)
        label = c
        if class_labels is not None and c in class_labels.keys():
            label = class_labels[c]
        class_metrics[label] = {
            'true_positives': true_positives,
            'false_positives': false_positives,
            'DICE\t\t': dc,
            'Hausdorff dist': hd,
            'precision\t': precision,
            'recall\t\t': recall,
            'rel abs vol diff': ravd,
            'avg surf dist symm': assd,
            'avg surf dist\t': asd,
            'roc_auc\t\t': scores[i]
        }
    return accuracy, class_metrics
 batch_y = Y_test[i_c:i_c + 1, :, :, :, :].copy()
 
 for j_c in range(n_class):
     dice_c[i_c, j_c] = dk_seg.dice(batch_y[0, :, :, :, j_c] == 1, y_tr_pr_c == j_c)
     
 y_t_c = np.argmax( batch_y[0, :, :, :, :], axis=-1)
 
 #dk_aux.save_pred_thumbs(batch_x[0,:,:,:,0], y_t_c, y_tr_pr_c, False, i_c, i_eval, images_dir )
 
 '''if i_eval==0:
     save_pred_mhds(batch_x[0,:,:,:,0], y_t_c, y_tr_pr_c, False, i_c, i_eval)
 else:
     save_pred_mhds(None, None, y_tr_pr_c, False, i_c, i_eval)'''
 
 dice_c[i_c, n_class] = hd95(y_t_c, y_tr_pr_c)
 dice_c[i_c, n_class+1] = asd(y_t_c, y_tr_pr_c)
 dice_c[i_c, n_class+2] = assd(y_t_c, y_tr_pr_c)
 
 y_tr_pr_soft= y_tr_pr_sum[:,:,:,1]/(y_tr_pr_cnt+1e-10)
 #dk_aux.save_pred_soft_thumbs(batch_x[0,:,:,:,0], y_t_c, y_tr_pr_c, y_tr_pr_soft, False, i_c, i_eval, images_dir)
 
 error_mask= dk_aux.seg_2_anulus(y_t_c, radius= 2.0)
 
 plot_save_path= None
 ECE, MCE, ECE_curve= dk_aux.estimate_ECE_and_MCE(y_t_c, y_tr_pr_soft, plot_save_path=plot_save_path)
 dice_c[i_c, n_class+3]= ECE
 dice_c[i_c, n_class+4]= MCE
 
 plot_save_path= None
 ECE, MCE, ECE_curve= dk_aux.estimate_ECE_and_MCE_masked(y_t_c, y_tr_pr_soft, error_mask, plot_save_path=plot_save_path)
 dice_c[i_c, n_class+5]= ECE
Example #7
0
print(' ')

# =============================================================================
#     Distancia Hausdorff
# =============================================================================
distanceHD1 = mdm.hd(cHull_binary,cHull_Mbinary,connectivity=1)

print('Distancia Hausdorff',distanceHD1)



# =============================================================================
#   Distancia media entre superficies
# =============================================================================

distanceASD = mdm.asd(cHull_binary,cHull_Mbinary,connectivity=1)

print('Distancia Media',distanceASD)



# =============================================================================
#     Distancia media simétrica entre superficies
# =============================================================================
distanceASSD = mdm.assd(cHull_binary,cHull_Mbinary,connectivity=1)

print('Distancia Media Simétrica',distanceASSD)


# =============================================================================
#     Distancia media entre superficie de objetos
Example #8
0
        lbl_p[..., idx] = utils.preprocess_lbl_slice(lbl[..., idx])

    # predict
    pred = []
    for idx in xrange(img.shape[2]):
        net1.blobs['data'].data[0, 0, ...] = img_p[..., idx]
        pred.append(net1.forward()['prob'][0, 1] > 0.5)

    pred = np.array(pred).transpose(1, 2, 0)

    # create volume instance from medpy
    v = volume.Volume(pred, lbl_p)
    # calculate metrics as in the oritinal paper
    voe = v.get_volumetric_overlap_error()
    rvd = v.get_relative_volume_difference()
    asd = metric.asd(pred, lbl_p)
    msd = metric.hd(pred, lbl_p)
    dice = metric.dc(pred, lbl_p) * 100  # convert to percentage

    perf_metrics.append([voe, rvd, asd, msd, dice])
    print('subject %d: %s' % (idx_subject, str([voe, rvd, asd, msd, dice])))

perf_metrics = np.array(perf_metrics)
perf_metrics_mean = np.mean(perf_metrics, axis=0)

print('inference complete: mean of performance metrics')
print(perf_metrics_mean)
"""
# visualize the results
for idx in xrange(30, 100, 20):
    utils.imshow(img[...,idx], img_p[..., idx], lbl_p[...,idx], pred[...,idx])