def __init__(self, comment="", simtime=30e-9, resolution=5e-3, cellnumber=1, padding=9e-3, radius=33.774e-3, height=122.36e-3 ,  Kx=0, Ky=0): ## XXXheight=122.3642686e-3
        meep_utils.AbstractMeepModel.__init__(self)        ## Base class initialisation
        self.simulation_name = "HollowCyl"    
        
        self.register_locals(locals())          ## Remember the parameters

        ## Obligatory parameters (used in the simulation)
        self.pml_thickness = padding/2
        self.simtime = simtime      # [s]HollowCyl_simtime=3.000e-08_height=3.000e-02
        self.src_freq, self.src_width = 3e9, 10e9     # [Hz] (note: gaussian source ends at t=10/src_width)
        self.interesting_frequencies = (.1e9, 8e9)     # Which frequencies will be saved to disk
        self.size_x = 2*radius+padding*2
        self.size_y = 2*radius+padding*2
        self.size_z = height+padding*2

        ## Define materials
        f_c = c / np.pi/self.resolution/meep_utils.meep.use_Courant() 
        self.materials = []  
        au = meep_materials.material_Au(where=self.where_metal)
        self.fix_material_stability(au, verbose=0)
        self.materials.append(au)
        #self.materials += [meep_materials.material_DrudeMetal(lfconductivity=1e4, f_c=f_c, gamma_factor=.5, epsplus=0, where=self.where_metal)]  

        meep_utils.plot_eps(self.materials, plot_conductivity=True, 
                draw_instability_area=(self.f_c(), 3*meep.use_Courant()**2), mark_freq={self.f_c():'$f_c$'})
        self.test_materials()
    def __init__(self, simtime=0.5e-13, resolution = 8e-9,size_x = 0.3e-6, size_y = 0.3e-6,
                 size_z = .75e-6,thickness_mgf2 = 50.8e-9,**other_args):
    #def __init__(self, simtime=1e-13, resolution = 5e-9,size_x = 0.2e-6, size_y = 0.2e-6,
     #            size_z = 0.5e-6,thickness_mgf2 = 99.8e-9,**other_args):
	meep_utils.AbstractMeepModel.__init__(self) #Inizialitation of the class
	

	self.simulation_name = "AntirrefFilm30deg"    
        self.src_freq = 545e12     # [Hz] (note: srcwidth irrelevant for continuous_source)
	self.src_width= 130e12
	self.interesting_frequencies=(430e12,650e12)
        self.pml_thickness = 5.0e-8
        self.size_x = size_x 
        self.size_y = size_y
        self.size_z = size_z
        self.simtime = simtime      # [s]
	self.monitor_z1 = - 3e-7
	self.monitor_z2 =  thickness_mgf2/2 + 2.5e-7
        self.Kx = (2*np.pi*self.src_freq/c)*np.sin(np.pi/6)#6.8017e6 # 30 degrees
	self.Ky = 0
	self.padding=0
        self.register_locals(locals(), other_args)          ## Remember the parameters
        ## Define materials
        f_c = c / np.pi/self.resolution/meep_utils.meep.use_Courant()

        self.materials   = [meep_materials.material_dielectric(eps=1.904,where=self.where_MgF2)] #eps=1.904
	self.materials +=  [meep_materials.material_dielectric(eps=3.24, where = self.where_sust)] 
	#self.materials = [] # uncomment if no materials present
        for material in self.materials: self.fix_material_stability(material, f_c=2e15, verbose=1)
        meep_utils.plot_eps(self.materials, plot_conductivity=True, 
                draw_instability_area=(self.f_c(), 3*meep.use_Courant()**2), mark_freq={self.f_c():'$f_c$'})
        self.test_materials()
Example #3
0
    def __init__(self, comment="", simtime=100e-12, resolution=3e-6, Kx=0, Ky=0, 
            spacing=75e-6, monzd=80e-6,                              # lateral simulation size, and the z-length left for whole structure
            apertured=5e-6, apertureth=5e-6, gaasth=2e-6,           # metal aperture (square hole size, metal thickness, gallium arsenide layer thickness)
            radius=10e-6, epsloss=0.01, spherey=0e-6, spherez=-14e-6, # dielectric sphere (radius and dielectric losses)
            wireth=4e-6, wirey=14e-6, wirez=-14e-6                    # metallic wire along x  (diameter, lateral position)
            ):
        meep_utils.AbstractMeepModel.__init__(self)        ## Base class initialisation
        self.simulation_name = "ApertureSphere"    
        self.register_locals(locals())          ## Remember the parameters

        ## Constants for the simulation
        self.pml_thickness = 20e-6
        self.monitor_z1, self.monitor_z2 = -monzd/2, self.apertureth+self.gaasth
        print  "self.monitor_z1, self.monitor_z2", self.monitor_z1, self.monitor_z2
        self.simtime = simtime      # [s]
        self.src_freq, self.src_width = 2000e9, 4000e9      # [Hz] (note: gaussian source ends at t=10/src_width)
        self.interesting_frequencies = (0e9, 4000e9)        # Which frequencies will be saved to disk

        self.size_x = spacing 
        self.size_y = spacing
        self.size_z = monzd*2 + 2*self.pml_thickness

        ## Define materials
        #self.materials = [meep_materials.material_dielectric(where = self.where_GaAs, eps=10)]  
        #self.materials += [meep_materials.material_TiO2_THz(where = self.where_TiO2)]  
        self.materials = []
        if self.radius > 0: self.materials += [meep_materials.material_dielectric(where = self.where_TiO2, eps=94., loss=epsloss)]  
        #if not 'NoGaAs' in comment:  self.materials += [meep_materials.material_dielectric(where = self.where_gaas, eps=12) ] %TODO test GaAs where-func
        self.materials += [meep_materials.material_Au(where = self.where_metal) ]
        for m in self.materials: self.fix_material_stability(m)

        ## Test the validity of the model
        meep_utils.plot_eps(self.materials, plot_conductivity=True, 
                draw_instability_area=(self.f_c(), 3*meep.use_Courant()**2), mark_freq={self.f_c():'$f_c$'})
        self.test_materials()
Example #4
0
    def __init__(self, comment="", simtime=100e-15, resolution=100e-9, size_x=16e-6, size_y=5e-6, size_z=5e-6,
            metalthick=.5e-6, apdisty=0e-6, apdistx=14e-6, aprad=.1e-6, monzd=123.456e-6):
        meep_utils.AbstractMeepModel.__init__(self)        ## Base class initialisation

        ## Constant parameters for the simulation
        self.simulation_name = "PlasmonsFilm"    
        self.src_freq = 400e12     # [Hz] (note: srcwidth irrelevant for continuous_source)
        #self.interesting_frequencies = (0e9, 2000e9)     # Which frequencies will be saved to disk (irrelevant here) XXX
        self.pml_thickness = 1e-6

        self.size_x = size_x 
        self.size_y = size_y
        self.size_z = size_z
        substrate_z = size_x / 3
        self.simtime = simtime      # [s]
        self.Kx = 0; self.Ky = 0; self.padding=0
        self.register_locals(locals())          ## Remember the parameters
        ## Define materials
        f_c = c / np.pi/self.resolution/meep_utils.meep.use_Courant()

        self.materials   = [meep_materials.material_Au(where=self.where_metal)]  
        self.materials[0].pol[0]['sigma'] /= 2. ## effective thin layer TODO test+tune+comment
        self.materials[0].pol[1:] = []      ## rm other osc

        #self.materials   = [meep_materials.material_DrudeMetal(lfconductivity=1e8, f_c=.2*f_c, where = self.where_metal)]  
        #self.materials   += [meep_materials.material_dielectric(where=self.where_diel, eps=2.)]  
        #self.TestMaterials()
        #self.materials   += [meep_materials.material_Au(where=None)]  
        meep_utils.plot_eps(self.materials, mark_freq=[f_c])

        ## Test the validity of the model
        for material in self.materials: self.fix_material_stability(material, f_c=2e15, verbose=1)
        meep_utils.plot_eps(self.materials, plot_conductivity=True, 
                draw_instability_area=(self.f_c(), 3*meep.use_Courant()**2), mark_freq={self.f_c():'$f_c$'})
        self.test_materials()
Example #5
0
    def __init__(
            self,
            comment="",
            simtime=100e-12,
            resolution=3e-6,
            Kx=0,
            Ky=0,
            spacing=75e-6,
            monzd=80e-6,  # lateral simulation size, and the z-length left for whole structure
            apertured=5e-6,
            apertureth=5e-6,
            gaasth=2e-6,  # metal aperture (square hole size, metal thickness, gallium arsenide layer thickness)
            radius=10e-6,
            epsloss=0.01,
            spherey=0e-6,
            spherez=-14e-6,  # dielectric sphere (radius and dielectric losses)
            wireth=4e-6,
            wirey=14e-6,
            wirez=-14e-6  # metallic wire along x  (diameter, lateral position)
    ):
        meep_utils.AbstractMeepModel.__init__(
            self)  ## Base class initialisation
        self.simulation_name = "ApertureSphere"
        self.register_locals(locals())  ## Remember the parameters

        ## Constants for the simulation
        self.pml_thickness = 20e-6
        self.monitor_z1, self.monitor_z2 = -monzd / 2, self.apertureth + self.gaasth
        print "self.monitor_z1, self.monitor_z2", self.monitor_z1, self.monitor_z2
        self.simtime = simtime  # [s]
        self.src_freq, self.src_width = 2000e9, 4000e9  # [Hz] (note: gaussian source ends at t=10/src_width)
        self.interesting_frequencies = (
            0e9, 4000e9)  # Which frequencies will be saved to disk

        self.size_x = spacing
        self.size_y = spacing
        self.size_z = monzd * 2 + 2 * self.pml_thickness

        ## Define materials
        #self.materials = [meep_materials.material_dielectric(where = self.where_GaAs, eps=10)]
        #self.materials += [meep_materials.material_TiO2_THz(where = self.where_TiO2)]
        self.materials = []
        if self.radius > 0:
            self.materials += [
                meep_materials.material_dielectric(where=self.where_TiO2,
                                                   eps=94.,
                                                   loss=epsloss)
            ]
        #if not 'NoGaAs' in comment:  self.materials += [meep_materials.material_dielectric(where = self.where_gaas, eps=12) ] %TODO test GaAs where-func
        self.materials += [meep_materials.material_Au(where=self.where_metal)]
        for m in self.materials:
            self.fix_material_stability(m)

        ## Test the validity of the model
        meep_utils.plot_eps(self.materials,
                            plot_conductivity=True,
                            draw_instability_area=(self.f_c(),
                                                   3 * meep.use_Courant()**2),
                            mark_freq={self.f_c(): '$f_c$'})
        self.test_materials()
    def __init__(self, comment="", simtime=150e-12, resolution=4e-6, cellsize=100e-6, cellnumber=1, padding=100e-6, 
            cornerradius=30e-6, xholesize=80e-6, yholesize=80e-6, slabthick=12e-6, slabcdist=0, **other_args):
        meep_utils.AbstractMeepModel.__init__(self)        ## Base class initialisation

        ## Constant parameters for the simulation
        self.simulation_name = "Fishnet"    
        self.src_freq, self.src_width = 1000e9, 4000e9    # [Hz] (note: gaussian source ends at t=10/src_width)
        self.interesting_frequencies = (10e9, 4000e9)    # Which frequencies will be saved to disk
        self.pml_thickness = .1*c/self.src_freq

        self.size_x = cellsize
        if yholesize == "inf" or yholesize == np.inf:
            self.size_y = resolution/1.8
            yholesize = np.inf
        else: 
            self.size_y = cellsize
        self.size_z = cellnumber*cellsize + 4*padding + 2*self.pml_thickness
        self.monitor_z1, self.monitor_z2 = (-(cellsize*cellnumber/2)-padding, (cellsize*cellnumber/2)+padding)
        self.cellcenters = np.arange((1-cellnumber)*cellsize/2, cellnumber*cellsize/2, cellsize)

        self.register_locals(locals(), other_args)          ## Remember the parameters

        ## Define materials (with manual Lorentzian clipping) 
        au = meep_materials.material_Au(where=self.where_fishnet)
        au.pol[0]['sigma'] /= 10      # adjust losses
        au.pol[0]['gamma'] *= 10
        self.fix_material_stability(au, verbose=0)
        self.materials = [au]  

        ## Test the validity of the model
        meep_utils.plot_eps(self.materials, plot_conductivity=True, 
                draw_instability_area=(self.f_c(), 3*meep.use_Courant()**2), mark_freq={self.f_c():'$f_c$'})
        self.test_materials()
    def __init__(self, comment="", simtime=50e-12, resolution=4e-6, cellsize=100e-6, cellnumber=1, padding=20e-6, 
            radius=40e-6, wirethick=6e-6, srrthick=6e-6, splitting=26e-6, splitting2=0e-6, capacitorr=10e-6, 
            cbarthick=0e-6, insplitting=100e-6, incapacitorr=0e-6, **other_args):
        meep_utils.AbstractMeepModel.__init__(self)        ## Base class initialisation

        ## Constant parameters for the simulation
        self.simulation_name = "SRRArray"    
        self.src_freq, self.src_width = 1000e9, 4000e9    # [Hz] (note: gaussian source ends at t=10/src_width)
        self.interesting_frequencies = (10e9, 2000e9)    # Which frequencies will be saved to disk
        self.pml_thickness = 20e-6

        self.size_x = cellsize 
        self.size_y = cellsize
        self.size_z = cellnumber*cellsize + 4*padding + 2*self.pml_thickness
        self.monitor_z1, self.monitor_z2 = (-(cellsize*cellnumber/2)-padding, (cellsize*cellnumber/2)+padding)
        self.cellcenters = np.arange((1-cellnumber)*cellsize/2, cellnumber*cellsize/2, cellsize)

        self.register_locals(locals(), other_args)          ## Remember the parameters

        ## Define materials
        self.materials = []  

        au = meep_materials.material_Au(where=self.where_wire)
        self.fix_material_stability(au, verbose=0)
        self.materials.append(au)

        ## Test the validity of the model
        meep_utils.plot_eps(self.materials, plot_conductivity=True, 
                draw_instability_area=(self.f_c(), 3*meep.use_Courant()**2), mark_freq={self.f_c():'$f_c$'})
        self.test_materials()
    def __init__(self, comment="", simtime=200e-15, resolution=20e-9, cellnumber=1, padding=50e-6, 
            tdist=50e-6, ldist=100e-6, rcore1=6e-6, rclad1=0, rcore2=6e-6, tshift=0, **other_args):
        """ I have a red laser (spot size : 2mm of diameter) that goes through 2 grids placed a 50cm (see pictures below) but 100um apart from each other. A photomultiplier is placed behind the grids at 1m. During the experiment the second grid moves transversally and alternatively block the light and let the light reaching the photomultiplier. The grids induce a diffraction pattern, of which we only collect the central bright spot with the photomultiplier (a pinhole is placed in front of it with a 2mm diameter hole). What I would like to do is to simulate the profile of intensity of the light collected at the photomultiplier while the second grid moves. That's a first thing. Secondly, I would like to simulate how the profile changes while some material is deposit on the bars of the first grids and obstruct slowly the light to go through. So what matters to me is to recorded "how much light" of the initial light reach my PM while the second grid moves for various thicknesses of material deposited on the first one. """
        meep_utils.AbstractMeepModel.__init__(self)        ## Base class initialisation

        ## Constant parameters for the simulation
        self.simulation_name = "TMathieu_Grating"    
        self.src_freq, self.src_width = 500e12, 2000e12    # [Hz] (note: gaussian source ends at t=10/src_width)
        self.interesting_frequencies = (380e12, 730e12)    # Which frequencies will be saved to disk
        self.pml_thickness = 500e-9

        self.size_x = resolution*1.8 
        self.size_y = tdist
        self.size_z = ldist + 2*padding + 2*self.pml_thickness
        self.monitor_z1, self.monitor_z2 = (-(ldist/2)-padding, (ldist/2)+padding)
        cellsize = ldist+2*padding

        self.register_locals(locals(), other_args)          ## Remember the parameters

        ## Define materials (with manual Lorentzian clipping) 
        self.materials = []  

        au = meep_materials.material_Au(where=self.where_wire)
        self.fix_material_stability(au, verbose=0)
        self.materials.append(au)

        ## Test the validity of the model
        meep_utils.plot_eps(self.materials, plot_conductivity=True, 
                draw_instability_area=(self.f_c(), 3*meep.use_Courant()**2), mark_freq={self.f_c():'$f_c$'})
        self.test_materials()
    def __init__(self, comment="", simtime=150e-12, resolution=6e-6, cellsize=100e-6, cellsizexy=100e-6, cellnumber=1, 
            padding=100e-6, 
            cornerradius=0e-6, xholesize=80e-6, yholesize=80e-6, slabthick=12e-6, slabcdist=0, **other_args):
        meep_utils.AbstractMeepModel.__init__(self)        ## Base class initialisation

        ## Constant parameters for the simulation
        self.simulation_name = "Fishnet"    
        self.src_freq, self.src_width = 1000e9, 4000e9    # [Hz] (note: gaussian source ends at t=10/src_width)
        self.interesting_frequencies = (1e9, 2*c/cellsize)    # Which frequencies will be saved to disk
        self.pml_thickness = .1*c/self.src_freq

        self.size_x = cellsizexy
        if yholesize == "inf" or yholesize == np.inf:
            self.size_y = resolution/1.8
            yholesize = np.inf
        else: 
            self.size_y = cellsizexy
        self.size_z = cellnumber*cellsize + 4*padding + 2*self.pml_thickness
        self.monitor_z1, self.monitor_z2 = (-(cellsize*cellnumber/2)-padding, (cellsize*cellnumber/2)+padding)
        self.cellcenters = np.arange((1-cellnumber)*cellsize/2, cellnumber*cellsize/2, cellsize)

        self.register_locals(locals(), other_args)          ## Remember the parameters

        ## Define materials (with manual Lorentzian clipping) 
        au = meep_materials.material_Au(where=self.where_fishnet)
        #au.pol[0]['sigma'] /= 1000      # adjust losses
        #au.pol[0]['gamma'] *= 3000
        self.fix_material_stability(au, verbose=0)
        self.materials = [au]  

        ## Test the validity of the model
        meep_utils.plot_eps(self.materials, plot_conductivity=True, 
                draw_instability_area=(self.f_c(), 3*meep.use_Courant()**2), mark_freq={self.f_c():'$f_c$'})
        self.test_materials()
    def __init__(self, comment="", simtime=200e-15, resolution=20e-9, cellnumber=1, padding=50e-6, 
            tdist=50e-6, ldist=100e-6, rcore1=6e-6, rclad1=0, rcore2=6e-6, tshift=0, **other_args):
        """ I have a red laser (spot size : 2mm of diameter) that goes through 2 grids placed a 50cm (see pictures below) but 100um apart from each other. A photomultiplier is placed behind the grids at 1m. During the experiment the second grid moves transversally and alternatively block the light and let the light reaching the photomultiplier. The grids induce a diffraction pattern, of which we only collect the central bright spot with the photomultiplier (a pinhole is placed in front of it with a 2mm diameter hole). What I would like to do is to simulate the profile of intensity of the light collected at the photomultiplier while the second grid moves. That's a first thing. Secondly, I would like to simulate how the profile changes while some material is deposit on the bars of the first grids and obstruct slowly the light to go through. So what matters to me is to recorded "how much light" of the initial light reach my PM while the second grid moves for various thicknesses of material deposited on the first one. """
        meep_utils.AbstractMeepModel.__init__(self)        ## Base class initialisation

        ## Constant parameters for the simulation
        self.simulation_name = "TMathieu_Grating"    
        self.src_freq, self.src_width = 500e12, 2000e12    # [Hz] (note: gaussian source ends at t=10/src_width)
        self.interesting_frequencies = (380e12, 730e12)    # Which frequencies will be saved to disk
        self.pml_thickness = 500e-9

        self.size_x = resolution*1.8 
        self.size_y = tdist
        self.size_z = ldist + 2*padding + 2*self.pml_thickness
        self.monitor_z1, self.monitor_z2 = (-(ldist/2)-padding, (ldist/2)+padding)
        cellsize = ldist+2*padding

        self.register_locals(locals(), other_args)          ## Remember the parameters

        ## Define materials (with manual Lorentzian clipping) 
        self.materials = []  

        au = meep_materials.material_Au(where=self.where_wire)
        self.fix_material_stability(au, verbose=0)
        self.materials.append(au)

        ## Test the validity of the model
        meep_utils.plot_eps(self.materials, plot_conductivity=True, 
                draw_instability_area=(self.f_c(), 3*meep.use_Courant()**2), mark_freq={self.f_c():'$f_c$'})
        self.test_materials()
    def __init__(self, comment="", simtime=50e-12, resolution=4e-6, cellsize=100e-6, cellnumber=1, padding=20e-6, 
            radius=40e-6, wirethick=6e-6, srrthick=6e-6, splitting=26e-6, splitting2=0e-6, capacitorr=10e-6, 
            cbarthick=0e-6, insplitting=100e-6, incapacitorr=0e-6, **other_args):
        meep_utils.AbstractMeepModel.__init__(self)        ## Base class initialisation

        ## Constant parameters for the simulation
        self.simulation_name = "SRRArray"    
        self.src_freq, self.src_width = 1000e9, 4000e9    # [Hz] (note: gaussian source ends at t=10/src_width)
        self.interesting_frequencies = (10e9, 2000e9)    # Which frequencies will be saved to disk
        self.pml_thickness = 20e-6

        self.size_x = cellsize 
        self.size_y = cellsize
        self.size_z = cellnumber*cellsize + 4*padding + 2*self.pml_thickness
        self.monitor_z1, self.monitor_z2 = (-(cellsize*cellnumber/2)-padding, (cellsize*cellnumber/2)+padding)
        self.cellcenters = np.arange((1-cellnumber)*cellsize/2, cellnumber*cellsize/2, cellsize)

        self.register_locals(locals(), other_args)          ## Remember the parameters

        ## Define materials
        self.materials = []  

        au = meep_materials.material_Au(where=self.where_wire)
        self.fix_material_stability(au, verbose=0)
        self.materials.append(au)

        ## Test the validity of the model
        meep_utils.plot_eps(self.materials, plot_conductivity=True, 
                draw_instability_area=(self.f_c(), 3*meep.use_Courant()**2), mark_freq={self.f_c():'$f_c$'})
        self.test_materials()
    def __init__(self,
                 comment="",
                 simtime=25e-15,
                 resolution=.5e-9,
                 cellsize=5e-9,
                 cellsizex=10e-9,
                 cellsizey=0,
                 cellnumber=1,
                 padding=1e-9,
                 radius=3.1e-9,
                 gap=0,
                 **other_args):
        meep_utils.AbstractMeepModel.__init__(
            self)  ## Base class initialisation

        ## Constant parameters for the simulation
        self.simulation_name = "PlasmonicDimers"
        self.src_freq, self.src_width = 1000e12, 4000e12  # Hz] (note: gaussian source ends at t=10/src_width)
        self.interesting_frequencies = (
            1e12, 1.5e15)  # Which frequencies will be saved to disk
        self.pml_thickness = .01 * c / self.src_freq  ## changing from 10x larger value caused less than 1e-4 change in transmittance
        print("self.pml_thickness", self.pml_thickness)

        self.size_x = cellsizex
        self.size_y = cellsizey if cellsizey else resolution / 1.8  ## if zero thickness in y, simulate cylinders
        self.size_z = cellnumber * cellsize + 4 * padding + 2 * self.pml_thickness

        self.monitor_z1, self.monitor_z2 = (-(cellsize * cellnumber / 2) -
                                            padding,
                                            (cellsize * cellnumber / 2) +
                                            padding)
        self.cellcenters = np.arange((1 - cellnumber) * cellsize / 2,
                                     cellnumber * cellsize / 2, cellsize)

        self.register_locals(locals(), other_args)  ## Remember the parameters

        self.gap = gap if gap else resolution / 1.8  ## adjust the gap to be single voxel TODO
        self.singlesphere = ('singlesphere' in self.comment)

        ## Define materials (with manual Lorentzian clipping)
        au = meep_materials.material_Au(where=self.where_metal)
        #au.pol[0]['sigma'] /= 1000      # adjust losses
        #au.pol[0]['gamma'] *= .1
        if 'nolorentz' in comment.lower():
            au.pol = au.pol[:
                            1]  ## optionally, remove all Lorentzian oscillators

        au.pol = au.pol[:
                        5]  ## remove the last oscillator - maximum number is 5 as given by python-meep

        self.fix_material_stability(au, verbose=0)
        self.materials = [au]

        ## Test the validity of the model
        meep_utils.plot_eps(self.materials,
                            plot_conductivity=True,
                            draw_instability_area=(self.f_c(),
                                                   3 * meep.use_Courant()**2),
                            mark_freq={self.f_c(): '$f_c$'})
        self.test_materials()
    def __init__(
            self,
            simtime=3.5e-13,
            resolution=4e-9,
            size_x=2.25e-6,
            size_y=0.1e-6,
            size_z=8e-7,
            thickness_Au=1.5e-7,
            depthx=5e-8,
            depthz=1e-7,
            thickness_sapphire=2e-7,  #1.6e-7,
            period=7.5e-7,
            Nslits=3,
            **other_args):
        meep_utils.AbstractMeepModel.__init__(
            self)  #Inizialitation of the class

        # Sapphire substrate thickness taken from Kim D S, Hohng S C, Malyarchuk V, Yoon
        #Y C, Ahn Y H, Yee K J, Park J W, Kim J, Park Q H and Lienau C 2003 Phys. Rev. Lett. 91 143901

        self.simulation_name = "SlabSubsCont3GaussSapphire"
        self.src_freq = 375e12  # [Hz] (note: srcwidth irrelevant for continuous_source)
        self.src_width = 160e12
        self.interesting_frequencies = (250e12, 500e12)
        self.pml_thickness = 2.5e-8
        self.Nslits = int(Nslits)
        self.size_x = size_x
        self.size_y = size_y
        self.size_z = size_z
        self.simtime = simtime  # [s]
        self.monitor_z1 = (-thickness_Au - 1e-7)
        self.monitor_z2 = 3.9e-7
        self.monitor_z3 = 1e-8
        self.Kx = 0  #(2*np.pi*self.src_freq/c)*np.sin(np.pi/6)#6.8017e6 # 30 degrees
        self.Ky = 0
        self.padding = 0
        self.register_locals(locals(), other_args)  ## Remember the parameters
        ## Define materials
        f_c = c / np.pi / self.resolution / meep_utils.meep.use_Courant()

        #self.materials = []
        self.materials = [meep_materials.material_Au(where=self.where_AuGauss)]
        #self.materials[0].pol[1:3]=[]
        self.materials += [
            meep_materials.material_dielectric(eps=3.133,
                                               where=self.where_sapphire)
        ]
        #self.materials += [meep_materials.material_Sapphire(where=self.where_sapphire)]

        for material in self.materials:
            self.fix_material_stability(material, f_c=2e15, verbose=1)
        meep_utils.plot_eps(self.materials,
                            plot_conductivity=True,
                            draw_instability_area=(self.f_c(),
                                                   3 * meep.use_Courant()**2),
                            mark_freq={self.f_c(): '$f_c$'})
        self.test_materials()
Example #14
0
    def __init__(self,
                 comment="",
                 simtime=100e-15,
                 resolution=100e-9,
                 size_x=16e-6,
                 size_y=5e-6,
                 size_z=5e-6,
                 metalthick=.5e-6,
                 apdisty=0e-6,
                 apdistx=14e-6,
                 aprad=.1e-6,
                 monzd=123.456e-6,
                 electronmass=1,
                 **other_args):
        meep_utils.AbstractMeepModel.__init__(
            self)  ## Base class initialisation

        ## Constant parameters for the simulation
        self.simulation_name = "PlasmonsFilm"
        self.src_freq = 400e12  # [Hz] (note: srcwidth irrelevant for continuous_source)
        #self.interesting_frequencies = (0e9, 2000e9)     # Which frequencies will be saved to disk (irrelevant here) XXX
        self.pml_thickness = 1e-6

        self.size_x = size_x
        self.size_y = size_y
        self.size_z = size_z
        substrate_z = size_x / 3
        self.simtime = simtime  # [s]
        self.Kx = 0
        self.Ky = 0
        self.padding = 0
        self.register_locals(locals(), other_args)  ## Remember the parameters
        ## Define materials
        f_c = c / np.pi / self.resolution / meep_utils.meep.use_Courant()

        self.materials = [meep_materials.material_Au(where=self.where_metal)]
        self.materials[0].pol[0][
            'sigma'] /= electronmass  ## effective thin layer TODO test+tune+comment
        self.materials[0].pol[1:] = []  ## rm other osc

        #self.materials   = [meep_materials.material_DrudeMetal(lfconductivity=1e8, f_c=.2*f_c, where = self.where_metal)]
        #self.materials   += [meep_materials.material_dielectric(where=self.where_diel, eps=2.)]
        #self.TestMaterials()
        #self.materials   += [meep_materials.material_Au(where=None)]
        meep_utils.plot_eps(self.materials, mark_freq=[f_c])

        ## Test the validity of the model
        for material in self.materials:
            self.fix_material_stability(material, f_c=2e15, verbose=1)
        meep_utils.plot_eps(self.materials,
                            plot_conductivity=True,
                            draw_instability_area=(self.f_c(),
                                                   3 * meep.use_Courant()**2),
                            mark_freq={self.f_c(): '$f_c$'})
        self.test_materials()
Example #15
0
    def __init__(self, comment="", simtime=100e-15, resolution=5e-9, cellnumber=1, padding=2e-6, cellsize = 200e-9,
            epsilon=33.97, blend=0, **other_args):
        """ This structure demonstrates that scatter.py can also compute the reflectance and transmittance of samples on 
        a substrate. The substrate is though to have effectively infinite thickness, since its back interface is not 
        included in the simulation volume. It is assumed that with thick enough substrate there will be no Fabry-Perot 
        interferences arising from the 
        reflection from its back side, so this kind of simulation can not predict them.

        The monitor planes can also be placed inside a dielectric, to enable the transmitted wave amplitude to be sensed 
        in the substrate medium. In this case the measured waveforms are 
        rescaled so that the transmitted energy is returned the same as if measured after reflection-less transition to vacuum. 
        This way, reflectance*2+transmittance*+losses still sum up to one.

        This example also demonstrates that on a steep interface with air the transmitted and reflected waves have 
        exactly the same energy with the choice of permittivity: ((1+.5**.5)/(1-.5**.5))**2, that is roughly 33.97.
        
        """
        meep_utils.AbstractMeepModel.__init__(self)        ## Base class initialisation

        ## Constant parameters for the simulation
        self.simulation_name = "HalfSpace"    
        self.src_freq, self.src_width = 500e12, 1000e12    # [Hz] (note: gaussian source ends at t=10/src_width)
        self.interesting_frequencies = (10e12, 1000e12)    # Which frequencies will be saved to disk
        self.pml_thickness = 500e-9

        self.size_z = blend + 4*padding + 2*self.pml_thickness + 6*resolution
        self.size_x = resolution*1.8 if other_args.get('Kx',0)==0 else resolution*5  ## allow some space along x if oblique incidence is set
        self.size_y = resolution*1.8 if other_args.get('Ky',0)==0 else resolution*5  ## dtto
        print  'self.size_x, self.size_y', self.size_x, self.size_y
        self.monitor_z1, self.monitor_z2 = (-padding-blend/2, padding+blend/2)
        self.register_locals(locals(), other_args)          ## Remember the parameters
        self.mon2eps = epsilon                  ## store what dielectric is the second monitor embedded in

        ## Define materials
        self.materials = []  
        if 'Au' in comment:         self.materials += [meep_materials.material_Au(where=self.where_m)]
        elif 'Ag' in comment:       self.materials += [meep_materials.material_Ag(where=self.where_m)]
        elif 'metal' in comment.lower():    
            self.materials += [meep_materials.material_Au(where=self.where_m)]
            self.materials[-1].pol[1:] = []
            self.materials[-1].pol[0]['gamma'] = 0
        else:                       self.materials += [meep_materials.material_dielectric(where=self.where_m, eps=self.epsilon)]

        for m in self.materials: 
            self.fix_material_stability(m, f_c=3e15) ## rm all osc above the first one, to optimize for speed 

        ## Test the validity of the model
        meep_utils.plot_eps(self.materials, plot_conductivity=True, 
                draw_instability_area=(self.f_c(), 3*meep.use_Courant()**2), mark_freq={self.f_c():'$f_c$'})
        self.test_materials()
    def __init__(self, comment="", simtime=100e-15, resolution=5e-9, cellnumber=1, padding=2e-6, cellsize = 200e-9,
            epsilon=33.97, blend=0, **other_args):
        """ This structure demonstrates that scatter.py can also compute the reflectance and transmittance of samples on 
        a substrate. The substrate can have an infinite thickness, since its back interface is not included in the simulation 
        volume. It is assumed that with thick enough substrate there will be no Fabry-Perot interferences due to reflection from
        its back side; this kind simulation can not predict them.

        The monitor planes can also be placed inside a dielectric. In this case the measured waveforms are 
        rescaled so that the transmitted energy is returned the same as if measured after reflection-less transition to vacuum. 
        This way, reflectance*2+transmittance*+losses still sum up to one.

        This example also demonstrates that on a steep interface with air the transmitted and reflected waves have 
        exactly the same energy with the choice of permittivity: ((1+.5**.5)/(1-.5**.5))**2, that is roughly 33.97.
        
        """
        meep_utils.AbstractMeepModel.__init__(self)        ## Base class initialisation

        ## Constant parameters for the simulation
        self.simulation_name = "HalfSpace"    
        self.src_freq, self.src_width = 500e12, 1000e12    # [Hz] (note: gaussian source ends at t=10/src_width)
        self.interesting_frequencies = (10e12, 1000e12)    # Which frequencies will be saved to disk
        self.pml_thickness = 500e-9

        self.size_z = blend + 4*padding + 2*self.pml_thickness + 6*resolution
        self.size_x = resolution*1.8 if other_args.get('Kx',0)==0 else resolution*5  ## allow some space along x if oblique incidence is set
        self.size_y = resolution*1.8 if other_args.get('Ky',0)==0 else resolution*5  ## dtto
        print  'self.size_x, self.size_y', self.size_x, self.size_y
        self.monitor_z1, self.monitor_z2 = (-padding-blend/2, padding+blend/2)
        self.register_locals(locals(), other_args)          ## Remember the parameters
        self.mon2eps = epsilon                  ## store what dielectric is the second monitor embedded in

        ## Define materials
        self.materials = []  
        if 'Au' in comment:         self.materials += [meep_materials.material_Au(where=self.where_m)]
        elif 'Ag' in comment:       self.materials += [meep_materials.material_Ag(where=self.where_m)]
        elif 'metal' in comment.lower():    
            self.materials += [meep_materials.material_Au(where=self.where_m)]
            self.materials[-1].pol[1:] = []
            self.materials[-1].pol[0]['gamma'] = 0
        else:                       self.materials += [meep_materials.material_dielectric(where=self.where_m, eps=self.epsilon)]

        for m in self.materials: 
            self.fix_material_stability(m, f_c=3e15) ## rm all osc above the first one, to optimize for speed 

        ## Test the validity of the model
        meep_utils.plot_eps(self.materials, plot_conductivity=True, 
                draw_instability_area=(self.f_c(), 3*meep.use_Courant()**2), mark_freq={self.f_c():'$f_c$'})
        self.test_materials()
Example #17
0
    def __init__(self,
                 simtime=0.5e-13,
                 resolution=8e-9,
                 size_x=0.3e-6,
                 size_y=0.3e-6,
                 size_z=.75e-6,
                 thickness_mgf2=50.8e-9,
                 **other_args):
        #def __init__(self, simtime=1e-13, resolution = 5e-9,size_x = 0.2e-6, size_y = 0.2e-6,
        #            size_z = 0.5e-6,thickness_mgf2 = 99.8e-9,**other_args):
        meep_utils.AbstractMeepModel.__init__(
            self)  #Inizialitation of the class

        self.simulation_name = "AntirrefFilm30deg"
        self.src_freq = 545e12  # [Hz] (note: srcwidth irrelevant for continuous_source)
        self.src_width = 130e12
        self.interesting_frequencies = (430e12, 650e12)
        self.pml_thickness = 5.0e-8
        self.size_x = size_x
        self.size_y = size_y
        self.size_z = size_z
        self.simtime = simtime  # [s]
        self.monitor_z1 = -3e-7
        self.monitor_z2 = thickness_mgf2 / 2 + 2.5e-7
        self.Kx = (2 * np.pi * self.src_freq / c) * np.sin(
            np.pi / 6)  #6.8017e6 # 30 degrees
        self.Ky = 0
        self.padding = 0
        self.register_locals(locals(), other_args)  ## Remember the parameters
        ## Define materials
        f_c = c / np.pi / self.resolution / meep_utils.meep.use_Courant()

        self.materials = [
            meep_materials.material_dielectric(eps=1.904,
                                               where=self.where_MgF2)
        ]  #eps=1.904
        self.materials += [
            meep_materials.material_dielectric(eps=3.24, where=self.where_sust)
        ]
        #self.materials = [] # uncomment if no materials present
        for material in self.materials:
            self.fix_material_stability(material, f_c=2e15, verbose=1)
        meep_utils.plot_eps(self.materials,
                            plot_conductivity=True,
                            draw_instability_area=(self.f_c(),
                                                   3 * meep.use_Courant()**2),
                            mark_freq={self.f_c(): '$f_c$'})
        self.test_materials()
    def __init__(self, comment="", simtime=2e-15, resolution=.5e-9, cellnumber=1, padding=100e-9, cellsize=10e-9, cellsizex=0, cellsizey=0, 
            epsilon=.9, gdepth=10e-9, gwidth=10e-9,  **other_args):
        """ Similar to the HalfSpace model, but defines a deep ultraviolet grating    
        Rear side does not define any padding - useful for reflective surfaces/gratings only
        """
        meep_utils.AbstractMeepModel.__init__(self)        ## Base class initialisation

        ## TODO: test out the effect of halving simtime, halving resolution, halving padding...

        ## Constant parameters for the simulation
        self.simulation_name = "DUVGrating"    
        self.src_freq, self.src_width = 24e15, 48e15    # [Hz] (note: gaussian source ends at t=10/src_width)
        self.interesting_frequencies = (.1e15, 40e15)    # Which frequencies will be saved to disk
        self.pml_thickness = 20e-9

        self.size_z = 2*padding + gdepth + 2*self.pml_thickness + 6*resolution

        if cellsizex != 0:
            self.size_x = cellsizex         ## non-flat periodic structure (grating?) with user-defined pitch
        elif other_args.get('Kx',0) != 0:
            self.size_x = resolution*5      ## flat structure, but oblique incidence requires several-pixel with 
        else:
            self.size_x = resolution*1.8    ## flat structure, zero component of K-vector, so we can make the structure as flat as possible
        if cellsizey != 0:
            self.size_y = cellsizey         ## dtto as for size_x above
        elif other_args.get('Ky',0) != 0:
            self.size_y = resolution*5      
        else:
            self.size_y = resolution*1.8 

        print  'self.size_x, self.size_y', self.size_x, self.size_y
        self.monitor_z1, self.monitor_z2 = (-padding-gdepth/2, padding+gdepth/2)
        self.register_locals(locals(), other_args)          ## Remember the parameters
        self.mon2eps = epsilon                  ## store what dielectric is the second monitor embedded in

        ## Define materials
        self.materials = []  
        self.materials += [meep_materials.material_dielectric(where=self.where_m, eps=self.epsilon)]

        for m in self.materials: 
            self.fix_material_stability(m, f_c=60e15) ## rm all osc above the first one, to optimize for speed 

        ## Test the validity of the model
        meep_utils.plot_eps(self.materials, plot_conductivity=True, 
                draw_instability_area=(self.f_c(), 3*meep.use_Courant()**2), mark_freq={self.f_c():'$f_c$'})
        self.test_materials()
    def __init__(self, comment="", simtime=100e-15, resolution=10e-9, cellnumber=1, padding=200e-9, cellsize = 200e-9,
            epsilon=33.97, blend=0, **other_args):
        """ This structure demonstrates that scatter.py can also be used for samples on a substrate with an infinite 
        thickness. The back side of the substrate is not simulated, and it is assumed there will be no Fabry-Perot
        interferences between its sides.

        The monitor planes are enabled to be placed also inside a dielectric. In which case the wave amplitude is 
        adjusted so that the light intensity is maintained. The field amplitudes and phases have physical meaning 
        only when both monitor planes are in the same medium, though.

        Besides, the example demonstrates that on a steep interface with air the transmitted and reflected waves have 
        exactly the same energy with the choice of permittivity: ((1+.5**.5)/(1-.5**.5))**2, that is roughly 33.97.
        
        """
        meep_utils.AbstractMeepModel.__init__(self)        ## Base class initialisation

        ## Constant parameters for the simulation
        self.simulation_name = "HalfSpace"    
        self.src_freq, self.src_width = 500e12, 100e12    # [Hz] (note: gaussian source ends at t=10/src_width)
        self.interesting_frequencies = (10e12, 1000e12)    # Which frequencies will be saved to disk
        self.pml_thickness = 500e-9

        self.size_x = resolution*1.8 
        self.size_y = resolution*1.8
        self.size_z = blend + 2*padding + 2*self.pml_thickness + 6*resolution
        self.monitor_z1, self.monitor_z2 = (-padding, padding)
        self.register_locals(locals(), other_args)          ## Remember the parameters
        self.mon2eps = epsilon                  ## store what dielectric is the second monitor embedded in

        ## Define materials
        self.materials = []  
        if 'Au' in comment:         self.materials += [meep_materials.material_Au(where=self.where_m)]
        elif 'Ag' in comment:       self.materials += [meep_materials.material_Ag(where=self.where_m)]
        elif 'metal' in comment:    
            self.materials += [meep_materials.material_Au(where=self.where_m)]
            self.materials[-1].pol[1:] = []
            self.materials[-1].pol[0]['gamma'] = 0
        else:                       self.materials += [meep_materials.material_dielectric(where=self.where_m, eps=self.epsilon)]

        for m in self.materials: 
            self.fix_material_stability(m, f_c=3e15) ## rm all osc above the first one, to optimize for speed 

        ## Test the validity of the model
        meep_utils.plot_eps(self.materials, plot_conductivity=True, 
                draw_instability_area=(self.f_c(), 3*meep.use_Courant()**2), mark_freq={self.f_c():'$f_c$'})
        self.test_materials()
    def __init__(self, comment="", simtime=30e-12, resolution=4e-6, cellsize=100e-6, cellnumber=1, padding=50e-6, 
            radius=30e-6, wirethick=0, wirecut=0, loss=1, epsilon="TiO2", diel=1, **other_args):
        meep_utils.AbstractMeepModel.__init__(self)        ## Base class initialisation

        ## Constant parameters for the simulation
        self.simulation_name = "SphereWire"    
        self.src_freq, self.src_width = 1000e9, 4000e9    # [Hz] (note: gaussian source ends at t=10/src_width)
        self.interesting_frequencies = (10e9, 3000e9)    # Which frequencies will be saved to disk
        self.pml_thickness = .1*c/self.src_freq

        self.size_x = cellsize if (radius>0 or wirecut>0) else resolution/1.8
        self.size_y = cellsize
        self.size_z = cellnumber*cellsize + 4*padding + 2*self.pml_thickness
        self.monitor_z1, self.monitor_z2 = (-(cellsize*cellnumber/2)-padding, (cellsize*cellnumber/2)+padding)
        self.cellcenters = np.arange((1-cellnumber)*cellsize/2, cellnumber*cellsize/2, cellsize)

        self.register_locals(locals(), other_args)          ## Remember the parameters

        ## Define materials (with manual Lorentzian clipping) 
        self.materials = []  
        if radius > 0:
            if epsilon=="TiO2":     ## use titanium dioxide if permittivity not specified...
                tio2 = meep_materials.material_TiO2(where=self.where_sphere) 
                if loss != 1: tio2.pol[0]['gamma'] *= loss   ## optionally modify the first TiO2 optical phonon to have lower damping
            else:           ## ...or define a custom dielectric if permittivity not specified
                tio2 = meep_materials.material_dielectric(where=self.where_sphere, eps=float(self.epsilon)) 
            self.fix_material_stability(tio2, verbose=0) ##f_c=2e13,  rm all osc above the first one, to optimize for speed 
            self.materials.append(tio2)

        self.materials.append(meep_materials.material_dielectric(where=self.where_diel, eps=self.diel))

        if wirethick > 0:
            au = meep_materials.material_Au(where=self.where_wire)
            #au.pol[0]['sigma'] /= 100
            #au.pol[0]['gamma'] *= 10000
            self.fix_material_stability(au, verbose=0)
            self.materials.append(au)

        ## Test the validity of the model
        meep_utils.plot_eps(self.materials, plot_conductivity=True, 
                draw_instability_area=(self.f_c(), 3*meep.use_Courant()**2), mark_freq={self.f_c():'$f_c$'})
        self.test_materials()
    def __init__(self, comment="", simtime=30e-12, resolution=4e-6, cellsize=50e-6, cellsizey=30e-6, cellnumber=1,
            padding=50e-6, wirewidth=6.5e-6, wirelength=29e-6, loss=1, epsilon="Si", **other_args):
        meep_utils.AbstractMeepModel.__init__(self)        ## Base class initialisation

        ## Constant parameters for the simulation
        self.simulation_name = "WiresOnSiWire"    
        self.src_freq, self.src_width = 1000e9, 4000e9    # [Hz] (note: gaussian source ends at t=10/src_width)
        self.interesting_frequencies = (10e9, 3000e9)    # Which frequencies will be saved to disk
        self.pml_thickness = .3*c/self.src_freq

        self.size_x = cellsize
        self.size_y = cellsizey
        self.size_z = cellsize + 4*padding + 2*self.pml_thickness
        self.monitor_z1, self.monitor_z2 = (-(cellsize*cellnumber/2)-padding, (cellsize*cellnumber/2)+padding)

        self.register_locals(locals(), other_args)          ## Remember the parameters

        ## Define materials (with manual Lorentzian clipping) 
        self.materials = []  

        if epsilon=="Si":     ## use silicon if permittivity not specified...
            si = meep_materials.material_Si_MIR(where=self.where_substr) 
            if loss != 1: si.pol[0]['gamma'] *= loss   ## optionally modify the first TiO2 optical phonon to have lower damping
        else:           ## ...or define a custom dielectric if permittivity not specified
            si = meep_materials.material_dielectric(where=self.where_substr, eps=float(self.epsilon)) 
        self.fix_material_stability(si, verbose=0) ## rm all osc above the first one, to optimize for speed 
        self.mon2eps =  meep_utils.analytic_eps(mat=si, freq=1e12) ## store what dielectric is the second monitor embedded in
        print '>>>>>>>>>>>>>>>>>>>>>>>>> self.mon2eps',self.mon2eps
        #self.mon2eps = 12 ## store what dielectric is the second monitor embedded in
        self.materials.append(si)

        au = meep_materials.material_Au(where=self.where_wire)
        #au.pol[0]['sigma'] /= 100
        #au.pol[0]['gamma'] *= 10000
        self.fix_material_stability(au, verbose=0)
        self.materials.append(au)


        ## Test the validity of the model
        meep_utils.plot_eps(self.materials, plot_conductivity=True, 
                draw_instability_area=(self.f_c(), 3*meep.use_Courant()**2), mark_freq={self.f_c():'$f_c$'})
        self.test_materials()
    def __init__(self, comment="", simtime=30e-12, resolution=4e-6, cellsize=100e-6, cellnumber=1, padding=50e-6, 
            radius=30e-6, wirethick=0, wirecut=0, loss=1, epsilon="TiO2", diel=1, **other_args):
        meep_utils.AbstractMeepModel.__init__(self)        ## Base class initialisation

        ## Constant parameters for the simulation
        self.simulation_name = "SphereWire"    
        self.src_freq, self.src_width = 1000e9, 4000e9    # [Hz] (note: gaussian source ends at t=10/src_width)
        self.interesting_frequencies = (10e9, 3000e9)    # Which frequencies will be saved to disk
        self.pml_thickness = .1*c/self.src_freq

        self.size_x = cellsize if (radius>0 or wirecut>0) else resolution/1.8
        self.size_y = cellsize
        self.size_z = cellnumber*cellsize + 4*padding + 2*self.pml_thickness
        self.monitor_z1, self.monitor_z2 = (-(cellsize*cellnumber/2)-padding, (cellsize*cellnumber/2)+padding)
        self.cellcenters = np.arange((1-cellnumber)*cellsize/2, cellnumber*cellsize/2, cellsize)

        self.register_locals(locals(), other_args)          ## Remember the parameters

        ## Define materials (with manual Lorentzian clipping) 
        self.materials = []  
        if radius > 0:
            if epsilon=="TiO2":     ## use titanium dioxide if permittivity not specified...
                tio2 = meep_materials.material_TiO2(where=self.where_sphere) 
                if loss != 1: tio2.pol[0]['gamma'] *= loss   ## optionally modify the first TiO2 optical phonon to have lower damping
                else:           ## ...or define a custom dielectric if permittivity not specified
                    tio2 = meep_materials.material_dielectric(where=self.where_sphere, eps=float(self.epsilon)) 
            self.fix_material_stability(tio2, verbose=0) ##f_c=2e13,  rm all osc above the first one, to optimize for speed 
            self.materials.append(tio2)

        self.materials.append(meep_materials.material_dielectric(where=self.where_diel, eps=self.diel))

        if wirethick > 0:
            au = meep_materials.material_Au(where=self.where_wire)
            #au.pol[0]['sigma'] /= 100
            #au.pol[0]['gamma'] *= 10000
            self.fix_material_stability(au, verbose=0)
            self.materials.append(au)

        ## Test the validity of the model
        meep_utils.plot_eps(self.materials, plot_conductivity=True, 
                draw_instability_area=(self.f_c(), 3*meep.use_Courant()**2), mark_freq={self.f_c():'$f_c$'})
        self.test_materials()
    def __init__(self, comment="", simtime=30e-12, resolution=4e-6, cellsize=50e-6, cellsizey=30e-6, cellnumber=1,
            padding=50e-6, wirewidth=6.5e-6, wirelength=29e-6, loss=1, epsilon="Si", **other_args):
        meep_utils.AbstractMeepModel.__init__(self)        ## Base class initialisation

        ## Constant parameters for the simulation
        self.simulation_name = "WiresOnSiWire"    
        self.src_freq, self.src_width = 1000e9, 4000e9    # [Hz] (note: gaussian source ends at t=10/src_width)
        self.interesting_frequencies = (10e9, 3000e9)    # Which frequencies will be saved to disk
        self.pml_thickness = .3*c/self.src_freq

        self.size_x = cellsize
        self.size_y = cellsizey
        self.size_z = cellsize + 4*padding + 2*self.pml_thickness
        self.monitor_z1, self.monitor_z2 = (-(cellsize*cellnumber/2)-padding, (cellsize*cellnumber/2)+padding)

        self.register_locals(locals(), other_args)          ## Remember the parameters

        ## Define materials (with manual Lorentzian clipping) 
        self.materials = []  

        if epsilon=="Si":     ## use silicon if permittivity not specified...
            si = meep_materials.material_Si_MIR(where=self.where_substr) 
            if loss != 1: si.pol[0]['gamma'] *= loss   ## optionally modify the first TiO2 optical phonon to have lower damping
        else:           ## ...or define a custom dielectric if permittivity not specified
            si = meep_materials.material_dielectric(where=self.where_substr, eps=float(self.epsilon)) 
        self.fix_material_stability(si, verbose=0) ## rm all osc above the first one, to optimize for speed 
        self.mon2eps =  meep_utils.analytic_eps(mat=si, freq=1e12) ## store what dielectric is the second monitor embedded in
        print '>>>>>>>>>>>>>>>>>>>>>>>>> self.mon2eps',self.mon2eps
        #self.mon2eps = 12 ## store what dielectric is the second monitor embedded in
        self.materials.append(si)

        au = meep_materials.material_Au(where=self.where_wire)
        #au.pol[0]['sigma'] /= 100
        #au.pol[0]['gamma'] *= 10000
        self.fix_material_stability(au, verbose=0)
        self.materials.append(au)


        ## Test the validity of the model
        meep_utils.plot_eps(self.materials, plot_conductivity=True, 
                draw_instability_area=(self.f_c(), 3*meep.use_Courant()**2), mark_freq={self.f_c():'$f_c$'})
        self.test_materials()
    def __init__(self, simtime=3.5e-13, resolution =4e-9,size_x = 2.25e-6, size_y = 0.1e-6,
                 size_z = 8e-7, thickness_Au = 1.5e-7,depthx = 5e-8, depthz = 1e-7,
	         thickness_sapphire = 2e-7, #1.6e-7,
	         period =7.5e-7, Nslits =3, **other_args):
	meep_utils.AbstractMeepModel.__init__(self) #Inizialitation of the class
	
	# Sapphire substrate thickness taken from Kim D S, Hohng S C, Malyarchuk V, Yoon 
	#Y C, Ahn Y H, Yee K J, Park J W, Kim J, Park Q H and Lienau C 2003 Phys. Rev. Lett. 91 143901


	self.simulation_name = "SlabAuSubsCont3Gauss" 
        self.src_freq = 375e12     # [Hz] (note: srcwidth irrelevant for continuous_source)
	self.src_width= 160e12
	self.interesting_frequencies=(250e12,500e12)
        self.pml_thickness = 2.5e-8
	self.Nslits = int(Nslits)
        self.size_x = size_x 
        self.size_y = size_y
        self.size_z = size_z
        self.simtime = simtime      # [s]
	self.monitor_z1 = (-thickness_Au - 1e-7)
	self.monitor_z2 =3.9e-7
	self.monitor_z3 = 1e-8
        self.Kx = 0#(2*np.pi*self.src_freq/c)*np.sin(np.pi/6)#6.8017e6 # 30 degrees
	self.Ky = 0
	self.padding=0
        self.register_locals(locals(), other_args)          ## Remember the parameters
        ## Define materials
        f_c = c / np.pi/self.resolution/meep_utils.meep.use_Courant()

	#self.materials = []
        self.materials   = [meep_materials.material_Au(where=self.where_AuGauss)]
	#self.materials[0].pol[1:3]=[]
	#self.materials += [meep_materials.material_dielectric(eps=4.0, where=self.where_sapphire)]#(eps=3.133,where=self.where_sapphire)]
	#self.materials += [meep_materials.material_Sapphire(where=self.where_sapphire)]

        for material in self.materials: self.fix_material_stability(material, f_c=2e15,
        verbose=1)
        meep_utils.plot_eps(self.materials, plot_conductivity=True, 
                draw_instability_area=(self.f_c(), 3*meep.use_Courant()**2), mark_freq={self.f_c():'$f_c$'})
        self.test_materials()
    def __init__(self,
                 comment="",
                 simtime=30e-9,
                 resolution=5e-3,
                 cellnumber=1,
                 padding=9e-3,
                 radius=33.774e-3,
                 height=122.36e-3,
                 Kx=0,
                 Ky=0,
                 **other_args):
        meep_utils.AbstractMeepModel.__init__(
            self)  ## Base class initialisation
        self.simulation_name = "HollowCyl"

        self.register_locals(locals(), other_args)  ## Remember the parameters

        ## Obligatory parameters (used in the simulation)
        self.pml_thickness = padding / 2
        self.simtime = simtime  # [s]HollowCyl_simtime=3.000e-08_height=3.000e-02
        self.src_freq, self.src_width = 3e9, 10e9  # [Hz] (note: gaussian source ends at t=10/src_width)
        self.interesting_frequencies = (
            .1e9, 8e9)  # Which frequencies will be saved to disk
        self.size_x = 2 * radius + padding * 2
        self.size_y = 2 * radius + padding * 2
        self.size_z = height + padding * 2

        ## Define materials
        f_c = c / np.pi / self.resolution / meep_utils.meep.use_Courant()
        self.materials = []
        au = meep_materials.material_Au(where=self.where_metal)
        self.fix_material_stability(au, verbose=0)
        self.materials.append(au)
        #self.materials += [meep_materials.material_DrudeMetal(lfconductivity=1e4, f_c=f_c, gamma_factor=.5, epsplus=0, where=self.where_metal)]

        meep_utils.plot_eps(self.materials,
                            plot_conductivity=True,
                            draw_instability_area=(self.f_c(),
                                                   3 * meep.use_Courant()**2),
                            mark_freq={self.f_c(): '$f_c$'})
        self.test_materials()
    def __init__(self, comment="", simtime=25e-15, resolution=.5e-9, cellsize=5e-9, cellsizex=10e-9, cellsizey=0, cellnumber=1, 
            padding=1e-9, radius=3.1e-9, gap=0, **other_args):
        meep_utils.AbstractMeepModel.__init__(self)        ## Base class initialisation

        ## Constant parameters for the simulation
        self.simulation_name = "PlasmonicDimers"    
        self.src_freq, self.src_width = 1000e12, 4000e12    # Hz] (note: gaussian source ends at t=10/src_width)
        self.interesting_frequencies = (1e12, 1.5e15)    # Which frequencies will be saved to disk
        self.pml_thickness = .01*c/self.src_freq        ## changing from 10x larger value caused less than 1e-4 change in transmittance
        print("self.pml_thickness", self.pml_thickness)

        self.size_x = cellsizex
        self.size_y = cellsizey if  cellsizey else resolution/1.8   ## if zero thickness in y, simulate cylinders
        self.size_z = cellnumber*cellsize + 4*padding + 2*self.pml_thickness

        self.monitor_z1, self.monitor_z2 = (-(cellsize*cellnumber/2)-padding, (cellsize*cellnumber/2)+padding)
        self.cellcenters = np.arange((1-cellnumber)*cellsize/2, cellnumber*cellsize/2, cellsize)

        self.register_locals(locals(), other_args)          ## Remember the parameters

        self.gap = gap if gap else resolution/1.8       ## adjust the gap to be single voxel TODO
        self.singlesphere = ('singlesphere' in self.comment)

        ## Define materials (with manual Lorentzian clipping) 
        au = meep_materials.material_Au(where=self.where_metal)
        #au.pol[0]['sigma'] /= 1000      # adjust losses
        #au.pol[0]['gamma'] *= .1
        if 'nolorentz' in comment.lower():
            au.pol = au.pol[:1]  ## optionally, remove all Lorentzian oscillators

        au.pol = au.pol[:5]  ## remove the last oscillator - maximum number is 5 as given by python-meep

        self.fix_material_stability(au, verbose=0)
        self.materials = [au]  

        ## Test the validity of the model
        meep_utils.plot_eps(self.materials, plot_conductivity=True, 
                draw_instability_area=(self.f_c(), 3*meep.use_Courant()**2), mark_freq={self.f_c():'$f_c$'})
        self.test_materials()
Example #27
0
    def __init__(self,
                 comment="",
                 simtime=100e-15,
                 resolution=10e-9,
                 cellnumber=1,
                 padding=200e-9,
                 cellsize=200e-9,
                 epsilon=33.97,
                 blend=0,
                 **other_args):
        """ This structure demonstrates that scatter.py can also be used for samples on a substrate with an infinite 
        thickness. The back side of the substrate is not simulated, and it is assumed there will be no Fabry-Perot
        interferences between its sides.

        The monitor planes are enabled to be placed also inside a dielectric. In which case the wave amplitude is 
        adjusted so that the light intensity is maintained. The field amplitudes and phases have physical meaning 
        only when both monitor planes are in the same medium, though.

        Besides, the example demonstrates that on a steep interface with air the transmitted and reflected waves have 
        exactly the same energy with the choice of permittivity: ((1+.5**.5)/(1-.5**.5))**2, that is roughly 33.97.
        
        """
        meep_utils.AbstractMeepModel.__init__(
            self)  ## Base class initialisation

        ## Constant parameters for the simulation
        self.simulation_name = "HalfSpace"
        self.src_freq, self.src_width = 500e12, 100e12  # [Hz] (note: gaussian source ends at t=10/src_width)
        self.interesting_frequencies = (
            10e12, 1000e12)  # Which frequencies will be saved to disk
        self.pml_thickness = 500e-9

        self.size_x = resolution * 1.8
        self.size_y = resolution * 1.8
        self.size_z = blend + 2 * padding + 2 * self.pml_thickness + 6 * resolution
        self.monitor_z1, self.monitor_z2 = (-padding, padding)
        self.register_locals(locals(), other_args)  ## Remember the parameters
        self.mon2eps = epsilon  ## store what dielectric is the second monitor embedded in

        ## Define materials
        self.materials = []
        if 'Au' in comment:
            self.materials += [meep_materials.material_Au(where=self.where_m)]
        elif 'Ag' in comment:
            self.materials += [meep_materials.material_Ag(where=self.where_m)]
        elif 'metal' in comment:
            self.materials += [meep_materials.material_Au(where=self.where_m)]
            self.materials[-1].pol[1:] = []
            self.materials[-1].pol[0]['gamma'] = 0
        else:
            self.materials += [
                meep_materials.material_dielectric(where=self.where_m,
                                                   eps=self.epsilon)
            ]

        for m in self.materials:
            self.fix_material_stability(
                m, f_c=3e15
            )  ## rm all osc above the first one, to optimize for speed

        ## Test the validity of the model
        meep_utils.plot_eps(self.materials,
                            plot_conductivity=True,
                            draw_instability_area=(self.f_c(),
                                                   3 * meep.use_Courant()**2),
                            mark_freq={self.f_c(): '$f_c$'})
        self.test_materials()