def test_temporal_and_frontal_hierarchy_reversal(self):
        """
        test combined temporal and frontals
        """
        patient = Semiology('Aphasia', Laterality.NEUTRAL, Laterality.NEUTRAL)
        patient.data_frame = self.df
        patient.granular = False
        inspect_result, _ = patient.query_semiology()

        hierarchy_df = Hierarchy(inspect_result)
        hierarchy_df.temporal_hierarchy_reversal()  # deafult max option
        hierarchy_df.frontal_hierarchy_reversal()
        inspect_result_reversed = hierarchy_df.new_df

        assert hierarchy_df.frontal_hr.equals(hierarchy_df.new_df)
        assert inspect_result.all().all() == inspect_result_reversed.all().all(
        )
        assert not hierarchy_df.temporal_hr.equals(hierarchy_df.new_df)
        # ^ because self.new_df.copy() in the Hierarchy.temporal_hierarchy_reversal() method, so order matters.
        assert (inspect_result_reversed['TL'].sum() == 3)
        assert (inspect_result_reversed['Anterior (temporal pole)'].sum() == 5)
        assert (inspect_result_reversed['Lateral Temporal'].sum() == 0)
        assert (inspect_result_reversed['ITG'].sum() == 4)
        assert (inspect_result_reversed['Mesial Temporal'].sum() == 5)
        assert (inspect_result_reversed['FL'].sum() == 0)
        assert (inspect_result_reversed['IFG (F3)\n(BA 44,45,47)'].sum() == 1)
        print('\n10 combined T & F hierarchy reversals\n')
    def test_MappingsCalibration_HierarchyReversal_SemioBrainBeta_TLd(self):
        """
        Test the mappings TL for mapping calibration visualisation in the systReview (SemioBrain Database - beta version)
        i.e.  not dummy data
        """
        patient = Semiology('mappings TLd', Laterality.NEUTRAL,
                            Laterality.NEUTRAL)

        patient.data_frame = self.use_SemioBrainBeta_notDummyData()
        patient.granular = False
        inspect_result, _ = patient.query_semiology()

        hierarchy_df = Hierarchy(inspect_result)
        hierarchy_df.all_hierarchy_reversal()  # deafult max option
        inspect_result_reversed = hierarchy_df.new_df

        # test postcodes
        assert (inspect_result['TL'].sum() == 1)
        assert (inspect_result['Lateral Temporal'].sum() == 1)
        assert (inspect_result[
            'STG (includes Transverse Temporal Gyrus, Both Planum)'].sum() == 1
                )
        assert 'Planum Temporale' not in inspect_result

        # test hierarchy reversal
        assert (inspect_result_reversed['TL'].sum() == 0)
        assert (inspect_result_reversed['Lateral Temporal'].sum() == 0)
        assert (inspect_result_reversed[
            'STG (includes Transverse Temporal Gyrus, Both Planum)'].sum() == 1
                )
        assert 'Planum Temporale' not in inspect_result
        assert 'Planum Polare' not in inspect_result
Example #3
0
    def factor_ql(self, term, normalise_to_localising_values=False):
        """
        factor function.
        NB normalise_to_localising_values default is False in semiology.py
        """
        patient = Semiology(term, Laterality.LEFT, Laterality.LEFT)
        patient.data_frame = self.df

        patient.normalise_to_localising_values = normalise_to_localising_values

        all_combined_gifs = patient.query_lateralisation(one_map_dummy)

        return all_combined_gifs
Example #4
0
    def test_NegativeLookBehind_Regex(self):
        """
        Test the NLB regex used in differentiating Tonic vs Asymmetric Tonic, atonic, generalised tonic, tonic-clonic etc in SemioDict.
        Note also that the SemioDict is the live one unless specifically specified:
            e.g. as an argument to QUERY_SEMIOLOGY(semiology_dict_path=dummy_semiology_dict_path=dummy_semiology_dict_path)
        """
        patient = Semiology('Tonic', Laterality.NEUTRAL, Laterality.NEUTRAL)
        patient.data_frame = self.df
        tonic_result, num_query_loc = patient.query_semiology()

        self.assertIs(type(tonic_result), pd.DataFrame)
        assert not tonic_result.empty
        assert (tonic_result['Localising'].sum() == 1 + 10)
        assert (tonic_result['Lateralising'].sum() == 1)

        # Now test for Atonic
        patient_two = Semiology('Atonic', Laterality.NEUTRAL,
                                Laterality.NEUTRAL)
        patient_two.data_frame = self.df
        atonic_result, num_query_loc = patient_two.query_semiology()

        self.assertIs(type(atonic_result), pd.DataFrame)
        assert not atonic_result.empty
        assert (atonic_result['Localising'].sum() == 999)
        assert (atonic_result['Lateralising'].sum() == 2)

        print('\n9 negative lookbehind regex\n')
Example #5
0
    def test_paed_exclusions_query_semio(self):
        """
        Test query_semiology then exclude paediatric cases.
        """
        patient = Semiology('spasm', Laterality.NEUTRAL, Laterality.NEUTRAL)
        patient.data_frame = self.df
        inspect_result, num_query_loc = patient.query_semiology()
        inspect_result = exclude_paediatric_cases(inspect_result)

        self.assertIs(type(inspect_result), pd.DataFrame)
        assert not inspect_result.empty
        assert (inspect_result['Localising'].sum() == 5 + 1)
        assert (inspect_result['Lateralising'].sum() == 0)
        print('\n8 paed exclusions query_semio()\n')
Example #6
0
    def test_prelim2_dummy_ILV_control(self):
        """
        Preliminary test as per issues #169 on GitHub.
        This uses "ILV_4" as semiology term, which is Example 2 on GitHub:
        https://github.com/thenineteen/Semiology-Visualisation-Tool/issues/169

        """
        patient = Semiology('ILV_4', Laterality.LEFT, Laterality.LEFT)
        patient.data_frame = self.df
        inspect_result, _ = patient.query_semiology()

        self.assertIs(type(inspect_result), pd.DataFrame)
        assert not inspect_result.empty
        assert (inspect_result['Localising'].sum() == 4)
        assert (inspect_result['Lateralising'].sum() == 0)
Example #7
0
    def test_toplevel_aphasia_parentheses_and_caps(self):
        """
        test query_semiology which calls QUERY_SEMIOLOGY
        Need to change the call to the semiology_dictionary to
            make it the dummy_semio_dict
        """
        patient = Semiology('Aphasia', Laterality.NEUTRAL, Laterality.NEUTRAL)
        patient.data_frame = self.df
        inspect_result, num_query_loc = patient.query_semiology()

        self.assertIs(type(inspect_result), pd.DataFrame)
        assert not inspect_result.empty
        # deafult excludes postictals
        assert (inspect_result['Localising'].sum() == 14 - 1)
        assert (inspect_result['Lateralising'].sum() == 6 - 1)
    def test_prelim5_ql_50_50(self):
        """
        Pipeline sequence test of ql: lateralises 50% CL and 50%IL.
        """
        patient = Semiology('pipeline_50_50_laateralises_semioC',
                            symptoms_side=Laterality.LEFT,
                            dominant_hemisphere=Laterality.LEFT)
        patient.data_frame = self.df

        # returns the results from Q_L pipeline
        all_combined_gifs = patient.query_lateralisation(
            one_map_dummy)

        self.assertIs(type(all_combined_gifs), pd.DataFrame)
        assert not all_combined_gifs.empty
        return all_combined_gifs
    def test_prelim4_ql_doesnot_lateralise(self):
        """
        """
        patient = Semiology('pipeline_notlaat_semioB',
                            symptoms_side=Laterality.LEFT,
                            dominant_hemisphere=Laterality.LEFT)
        patient.data_frame = self.df

        # as no lateralising data, the below will run a manual pipeline
        # involving melt_then_pivot_query and pivot_result_to_one_map:
        all_combined_gifs = patient.query_lateralisation(
            one_map_dummy)

        self.assertIs(type(all_combined_gifs), pd.DataFrame)
        assert not all_combined_gifs.empty
        return all_combined_gifs
Example #10
0
    def test_paed_default_query_semio(self):
        """
        Test query_semiology for excluding paediatric cases.
        This test now shows that default query_semiology() DOES filter paediatric cases.

        """
        patient = Semiology('spasm', Laterality.NEUTRAL, Laterality.NEUTRAL)
        patient.data_frame = self.df
        # revert default paed exclusions
        patient.include_only_paediatric_cases = True
        inspect_result, num_query_loc = patient.query_semiology()

        self.assertIs(type(inspect_result), pd.DataFrame)
        assert not inspect_result.empty
        assert (inspect_result['Localising'].sum() == 10)
        assert (inspect_result['Lateralising'].sum() == 0)
        print('\n7 paed query_semio()\n')
    def test_frontal_hierarchy_reversal(self):
        """
        continuing testing reversal of postcode system
        for new class Hierarchy
        """
        patient = Semiology('Aphasia', Laterality.NEUTRAL, Laterality.NEUTRAL)
        patient.data_frame = self.df
        inspect_result, _ = patient.query_semiology()

        hierarchy_df = Hierarchy(inspect_result)
        hierarchy_df.frontal_hierarchy_reversal()  # deafult max option
        inspect_result_reversed = hierarchy_df.frontal_hr

        # # note default is to exclude post ictals, otherwise add +1 to both below
        assert (inspect_result_reversed['FL'].sum() == 0)
        assert (inspect_result_reversed['IFG (F3)\n(BA 44,45,47)'].sum() == 1)
        print('\n9 frontal dictionary hierarchy reversal\n')
    def test_prelim2_qs_doesnot_lateralise(self):
        """
        Pipeline sequence testing of dummy data: does not lateralise.
        This is a standalone test to ensure qs/QS find dummy semiology.

        Test query_semiology which calls QUERY_SEMIOLOGY.
        The call to the semiology_dictionary is the dummy_semio_dict.
        """
        patient = Semiology('pipeline_notlaat_semioB',
                            Laterality.NEUTRAL, Laterality.NEUTRAL)
        patient.data_frame = self.df
        inspect_result, _ = patient.query_semiology()

        self.assertIs(type(inspect_result), pd.DataFrame)
        assert not inspect_result.empty
        assert(inspect_result['Localising'].sum() == 10)
        assert(inspect_result['Lateralising'].sum() == 0)
    def test_prelim3_ql_lateralises(self):
        """
        Pipeline sequence test of ql: lateralises
        The call to the semiology_dictionary is the dummy_semio_dict as passed as an argument to q_l.
        Relies on mapping strategy as uses gifs.
        """
        patient = Semiology('pipeline_laateralises_semioA',
                            symptoms_side=Laterality.LEFT,
                            dominant_hemisphere=Laterality.LEFT)
        patient.data_frame = self.df

        # returns the results from Q_L pipeline
        all_combined_gifs = patient.query_lateralisation(
            one_map_dummy)

        self.assertIs(type(all_combined_gifs), pd.DataFrame)
        assert not all_combined_gifs.empty
        return all_combined_gifs
    def test_hierarchy(self):
        """
        first tested postcode system which duplicates mapping
        before testing its reversal.

        """
        patient = Semiology('Aphasia', Laterality.NEUTRAL, Laterality.NEUTRAL)
        patient.data_frame = self.df
        # default behaviour of query_semiology changed to use granular hierarchy reversal:
        patient.granular = False
        inspect_result, _ = patient.query_semiology()
        assert (inspect_result['TL'].sum() == 12)
        assert (inspect_result['Anterior (temporal pole)'].sum() == 5)
        assert (inspect_result['Lateral Temporal'].sum() == 4)
        assert (inspect_result['ITG'].sum() == 4)
        assert (inspect_result['Mesial Temporal'].sum() == 5)
        # # by default postictal are excluded. Otherwise add +1 to both below
        assert (inspect_result['FL'].sum() == 1)
        assert (inspect_result['IFG (F3)\n(BA 44,45,47)'].sum() == 1)
        print('\n7 hierarchy\n')
Example #15
0
    def test_toplevel_query_lat_mappings(self):
        """
        The call to the semiology_dictionary is the dummy_semio_dict as passed as an argument to q_l
        Relies on mapping strategy as uses gifs
        """

        patient = Semiology('Aphasia', Laterality.NEUTRAL, Laterality.NEUTRAL)
        patient.data_frame = self.df
        all_combined_gifs = patient.query_lateralisation(one_map_dummy)

        self.assertIs(type(all_combined_gifs), pd.DataFrame)
        assert not all_combined_gifs.empty

        labels = ['Gif Parcellations', 'pt #s']
        all_combined_gifs = all_combined_gifs.astype({
            'Gif Parcellations': 'int32',
            'pt #s': 'int32'
        })
        new_all_combined_gifindexed = all_combined_gifs.loc[:, labels]

        new_all_combined_gifindexed.set_index('Gif Parcellations',
                                              inplace=True)

        # new_all_combined_gifindexed.to_csv(r'D:\aphasia_fixture.csv')
        # load fixture:
        fixture = pd.read_excel(
            dummy_data_path,
            header=0,
            usecols='A:B',
            sheet_name='fixture_aphasia',
            index_col=0,
            engine="openpyxl",
        )
        # fixture.sort_index(inplace=True)
        assert ((new_all_combined_gifindexed.shape) == (fixture.shape))
        #         print('new_all_combined_gifindexed.shape is: ',
        #               new_all_combined_gifindexed.shape)
        #         print('fixture.shape.shape is: ', fixture.shape)

        assert (new_all_combined_gifindexed.index == fixture.index).all()
        assert (new_all_combined_gifindexed.values == fixture.values).all()
    def test_temporal_hierarchy_reversal(self):
        """
        now test reversal postcode system which duplicates mapping
        for new class Hierarchy
        """
        patient = Semiology('Aphasia', Laterality.NEUTRAL, Laterality.NEUTRAL)
        patient.data_frame = self.df
        patient.granular = False
        inspect_result, _ = patient.query_semiology()

        # # the three lines below were integrated into default query_semiology() using.granular = True
        hierarchy_df = Hierarchy(inspect_result)
        hierarchy_df.temporal_hierarchy_reversal()  # deafult max option
        inspect_result_reversed = hierarchy_df.temporal_hr

        assert (inspect_result_reversed['TL'].sum() == 3)
        assert (inspect_result_reversed['Anterior (temporal pole)'].sum() == 5)
        assert (inspect_result_reversed['Lateral Temporal'].sum() == 0)
        assert (inspect_result_reversed['ITG'].sum() == 4)
        assert (inspect_result_reversed['Mesial Temporal'].sum() == 5)
        print('\n8 temporal hierarchy reversal\n')
    def test_all_hierarchy_reversals(self):
        """
        test all.
        """
        patient = Semiology('Aphasia', Laterality.NEUTRAL, Laterality.NEUTRAL)
        patient.data_frame = self.df
        inspect_result, _ = patient.query_semiology()

        hierarchy_df = Hierarchy(inspect_result)
        hierarchy_df.all_hierarchy_reversal()  # deafult max option
        inspect_result_reversed = hierarchy_df.new_df

        # assert object doesn't have any _hr aatribute:
        assert not hasattr(hierarchy_df, 'temporal_hr')
        assert (inspect_result_reversed['TL'].sum() == 3)
        assert (inspect_result_reversed['Anterior (temporal pole)'].sum() == 5)
        assert (inspect_result_reversed['Lateral Temporal'].sum() == 0)
        assert (inspect_result_reversed['ITG'].sum() == 4)
        assert (inspect_result_reversed['Mesial Temporal'].sum() == 5)
        # these two lines should be +1 if not excluding postictals
        assert (inspect_result_reversed['FL'].sum() == 0)
        assert (inspect_result_reversed['IFG (F3)\n(BA 44,45,47)'].sum() == 1)
        print('\n11 all_hierarchy reversals\n')
Example #18
0
    def test_latexceedsloc_3(self):
        """
        Test capturing lateralisation value when it exceeds localising value (part1) and combining with lat_no_loc and lat_and_loc (part 2).
        Note that the default in Q_L of  normalise_lat_to_loc = False and using norm_ratio = lower_value / higher_value
            results in capping of lateralisation influence on data visualisation.

        In the specific case of latexceedsloc semiology, despite 500 lat cumulative datapoints and 2 localising points,
            the GIF results are:
            {155: 2.0, 156:1.0}
        """
        patient = Semiology('latexceedsloc', Laterality.LEFT, Laterality.LEFT)
        patient.data_frame = self.df

        # (part 1) test latexceedsloc alone using norm_ratio/oddsratio method of Q_L:
        heatmap, _ = patient.get_num_datapoints_dict(method='minmax')
        assert heatmap[156] == 200.0
        assert heatmap[155] == 300.0

        # (part 2) combine above with lat_not_loc and lat_and_loc:
        patient = Semiology('lat', Laterality.LEFT, Laterality.LEFT)
        patient.data_frame = self.df

        lat_allgifs = patient.query_lateralisation(one_map_dummy)

        # drop the zero entries - should be only the IL left ones which aren't MTG of TL:
        lat_allgifs = lat_allgifs[['Gif Parcellations', 'pt #s']].astype({
            'Gif Parcellations':
            'int32',
            'pt #s':
            'int32'
        })
        lat_allgifs.set_index('Gif Parcellations', inplace=True)
        lat_allgifs = lat_allgifs.loc[lat_allgifs['pt #s'] != 0, :]

        # assert using shape this not all are 1 so should not be the same:
        assert not lat_allgifs['pt #s'].sum() == lat_allgifs.shape[0]
        # check the MTG on the left (IL) GIF # 156 is == 3,
        #   which it isn't due to the norm_ratio method in Q_L - as can be seen from part 1
        #   so instead we see in part 1 156 was 1, but in the spreadsheet it was 2. so will give 2.
        #   3 is better but lost due to norm_ratio method in Q_L
        assert (lat_allgifs.loc[156, 'pt #s'] == 201)

        # for the right sided GIF, 155, latexceedsloc gives 2 [/],
        #   lat_not_loc gives 1 (CL) (See test_lat_not_loc_1)[/], and
        #   lat_and_loc adds none [/]
        assert (lat_allgifs.loc[155, 'pt #s'] == 301)
Example #19
0
    def test_only_postictal_cases(self):
        """
        Include only the single postictal aphasia. Note Dominant in dummy data.
        cf test_postictal_exclusions
        """
        # Low level test
        df_postictal = only_postictal_cases(self.df)
        query, num_query_lat, num_query_loc = QUERY_SEMIOLOGY(
            df_postictal,
            semiology_term=['aphasia'],
            ignore_case=True,
            semiology_dict_path=None,
            col1='Reported Semiology',
            col2='Semiology Category',
        )
        assert (query['Localising'].sum() == 1)
        assert (query['Lateralising'].sum() == 1)

        # High level test
        patient = Semiology('aphasia',
                            Laterality.NEUTRAL,
                            dominant_hemisphere=Laterality.LEFT)
        patient.data_frame = self.df
        patient.include_postictals = True
        patient.include_only_postictals = True
        patient.granular = True

        lat_allgifs = patient.query_lateralisation(one_map_dummy)
        lat_allgifs = lat_allgifs[['Gif Parcellations', 'pt #s']].astype({
            'Gif Parcellations':
            'int32',
            'pt #s':
            'int32'
        })
        lat_allgifs.set_index('Gif Parcellations', inplace=True)

        # note that dominant_hemisphere == Laterality.LEFT as set above. Just to clarify results change if dominace changes. Also 1's become 2's if not granular.
        assert (lat_allgifs.loc[164, 'pt #s'] == 1)
        assert (lat_allgifs.loc[166, 'pt #s'] == 1)
        assert (lat_allgifs.loc[163, 'pt #s'] == 0)
        assert (lat_allgifs.loc[165, 'pt #s'] == 0)

        lat_allgifs = lat_allgifs.loc[lat_allgifs['pt #s'] != 0, :]
        SVT_output, _ = patient.get_num_datapoints_dict(method='minmax')
        assert SVT_output == dict((lat_allgifs)['pt #s'])
Example #20
0
    def test_latnotloc_and_latandloc_2(self):
        """
        Test capturing the lateralising but not localising data rather than skipping it.
        integrated with lat and loc data.
        """
        patient = Semiology('lat_', Laterality.LEFT, Laterality.LEFT)
        patient.data_frame = self.df
        lat_not_loc_all_combined_gifs = patient.query_lateralisation(
            one_map_dummy)

        # inspect result
        lat_not_loc_result, _ = patient.query_semiology()

        self.assertIs(type(lat_not_loc_all_combined_gifs), pd.DataFrame)
        assert not lat_not_loc_all_combined_gifs.empty

        # drop the zero entries - should be only the IL left ones which aren't MTG of TL:
        lat_not_loc_all_combined_gifs = lat_not_loc_all_combined_gifs[[
            'Gif Parcellations', 'pt #s'
        ]].astype({
            'Gif Parcellations': 'int32',
            'pt #s': 'int32'
        })
        lat_not_loc_all_combined_gifs.set_index('Gif Parcellations',
                                                inplace=True)
        lat_not_loc_gifsclean = lat_not_loc_all_combined_gifs.loc[
            lat_not_loc_all_combined_gifs['pt #s'] != 0, :]

        gifs_right, gifs_left = gifs_lat_factor()
        lat_not_loc_gifsclean_rights = (lat_not_loc_gifsclean.drop(
            index=156).index.isin(gifs_right).all())

        # inspect result assertions
        assert (lat_not_loc_result.Localising.sum() == 1)
        assert (lat_not_loc_result['Lateralising'].sum() == 2)

        # all_combined_gifs assertions
        # all except GIF 156 (L MTG) are in the right GIFs:
        assert ((lat_not_loc_gifsclean_rights == True))
        assert ((lat_not_loc_gifsclean.index.isin(gifs_left)).any() == True)
        # assert using shape as all pt #s are 1:
        assert (lat_not_loc_gifsclean['pt #s'].sum() ==
                lat_not_loc_gifsclean.shape[0])

        # check that latnotloc gives 1 and latandloc adds zero to right MTG GIF #155
        heatmap, _ = patient.get_num_datapoints_dict(method='minmax')
        assert heatmap[155] == 1  # right
Example #21
0
    def test_lat_not_loc_1(self):
        """
        Test capturing the lateralising but not localising data rather than skipping it.
        As implemented in QUERY_LATERALISATION in branch "Lateralising but no localising value".
        """
        patient = Semiology('lat_not_loc', Laterality.LEFT, Laterality.LEFT)
        patient.data_frame = self.df
        lat_not_loc_all_combined_gifs = patient.query_lateralisation(
            one_map_dummy)

        # inspect result
        lat_not_loc_result, num_query_loc = patient.query_semiology()

        self.assertIs(type(lat_not_loc_all_combined_gifs), pd.DataFrame)
        assert not lat_not_loc_all_combined_gifs.empty

        # drop the zero entries as these are from the CL/IL zeros:
        lat_not_loc_all_combined_gifs = lat_not_loc_all_combined_gifs[[
            'Gif Parcellations', 'pt #s'
        ]].astype({
            'Gif Parcellations': 'int32',
            'pt #s': 'int32'
        })
        lat_not_loc_all_combined_gifs.set_index('Gif Parcellations',
                                                inplace=True)
        lat_not_loc_gifsclean = lat_not_loc_all_combined_gifs.loc[
            lat_not_loc_all_combined_gifs['pt #s'] != 0, :]
        # now we know only the CL data remains in this dummy data, which is on the RIGHT.
        gifs_right, gifs_left = gifs_lat_factor()
        lat_not_loc_gifsclean_rights = (
            lat_not_loc_gifsclean.index.isin(gifs_right).all())

        # inspect result assertions
        assert (lat_not_loc_result.Localising.sum() == 0)
        assert (lat_not_loc_result['Lateralising'].sum() == 1)

        # all_combined_gifs assertions
        assert ((lat_not_loc_gifsclean_rights == True))
        assert ((lat_not_loc_gifsclean.index.isin(gifs_left)).any() == False)
        assert (lat_not_loc_gifsclean['pt #s'].sum() ==
                lat_not_loc_gifsclean.shape[0])

        # test MTG on right 155 gif # gives 1:
        heatmap, _ = patient.get_num_datapoints_dict(method='minmax')
        assert 156 not in heatmap  # left
        assert heatmap[155] == 1  # right
def p_GIFs(
        global_lateralisation=False,
        include_paeds_and_adults=True,
        include_only_postictals=False,
        symptom_laterality='NEUTRAL',
        dominance='NEUTRAL',
        hierarchy_reversal: bool = True,
        include_spontaneous_semiology: bool = False,  # TS only
):
    """
    Return the normalised/unnormalised marginal probabilities for each GIF parcellation.
        for ictal semiologies only (excluding postictals)

    see marginal_GIF_probabilities() for sensitivity analyses
        e.g. by adding include_concordance=False for data queries excluding concordance
            or changing laterality or age
    """

    # normalised
    patient_all_semiology_norm = Semiology(
        ".*",
        symptoms_side=Laterality.NEUTRAL,
        dominant_hemisphere=Laterality.NEUTRAL,
        include_postictals=False,
        include_paeds_and_adults=include_paeds_and_adults,
        normalise_to_localising_values=True,
        global_lateralisation=global_lateralisation,
        include_spontaneous_semiology=include_spontaneous_semiology,
    )

    if symptom_laterality == 'left':
        patient_all_semiology_norm.symptoms_side = Laterality.LEFT
    if dominance == 'left':
        patient_all_semiology_norm.dominant_hemisphere = Laterality.LEFT

    patient_all_semiology_norm.include_only_postictals = include_only_postictals
    patient_all_semiology_norm.granular = hierarchy_reversal
    all_combined_gifs_norm, _ = patient_all_semiology_norm.get_num_datapoints_dict(
    )
    p_GIF_norm = marginal_GIF_probabilities(all_combined_gifs_norm)

    # now not normalised version
    patient_all_semiology_notnorm = Semiology(
        ".*",
        symptoms_side=Laterality.NEUTRAL,
        dominant_hemisphere=Laterality.NEUTRAL,
        include_postictals=False,
        include_paeds_and_adults=include_paeds_and_adults,
        normalise_to_localising_values=False,
        global_lateralisation=global_lateralisation,
    )

    if symptom_laterality == 'left':
        patient_all_semiology_notnorm.symptoms_side = Laterality.LEFT
    if dominance == 'left':
        patient_all_semiology_notnorm.dominant_hemisphere = Laterality.LEFT

    patient_all_semiology_notnorm.include_only_postictals = include_only_postictals
    patient_all_semiology_notnorm.granular = hierarchy_reversal
    all_combined_gifs_notnorm, _ = patient_all_semiology_notnorm.get_num_datapoints_dict(
    )
    p_GIF_notnorm = marginal_GIF_probabilities(all_combined_gifs_notnorm)

    return p_GIF_norm, p_GIF_notnorm