Example #1
0
    def forward_step_helper(microbatch_id):
        """Helper method to run forward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        forward_step())."""
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=True)
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

        # forward step
        if mpu.is_pipeline_first_stage():
            if len(input_tensors[model_chunk_id]) == \
                    len(output_tensors[model_chunk_id]):
                input_tensors[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id][-1]
        output_tensor = forward_step(forward_step_func,
                                     data_iterator[model_chunk_id],
                                     model[model_chunk_id], input_tensor,
                                     losses_reduced)
        output_tensors[model_chunk_id].append(output_tensor)

        # if forward-only, no need to save tensors for a backward pass
        if forward_only:
            input_tensors[model_chunk_id].pop()
            output_tensors[model_chunk_id].pop()

        return output_tensor
Example #2
0
    def backward_step_helper(microbatch_id):
        """Helper method to run backward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        backward_step())."""
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=False)
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

        if mpu.is_pipeline_last_stage():
            if len(output_tensor_grads[model_chunk_id]) == 0:
                output_tensor_grads[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id].pop(0)
        output_tensor = output_tensors[model_chunk_id].pop(0)
        output_tensor_grad = output_tensor_grads[model_chunk_id].pop(0)
        input_tensor_grad = \
            backward_step(optimizer,
                          input_tensor,
                          output_tensor,
                          output_tensor_grad)

        return input_tensor_grad
Example #3
0
def load_checkpoint(model,
                    optimizer,
                    lr_scheduler,
                    load_arg='load',
                    strict=True):
    """Load a model checkpoint and return the iteration.
    strict (bool): whether to strictly enforce that the keys in
        :attr:`state_dict` of the checkpoint match the names of
        parameters and buffers in model.
    """
    args = get_args()
    load_dir = getattr(args, load_arg)

    model = utils.unwrap_model(model)

    # Read the tracker file and set the iteration.
    tracker_filename = get_checkpoint_tracker_filename(load_dir)

    # If no tracker file, return iretation zero.
    if not os.path.isfile(tracker_filename):
        print_rank_0('WARNING: could not find the metadata file {} '.format(
            tracker_filename))
        print_rank_0('    will not load any checkpoints and will start from '
                     'random')
        return 0

    # Otherwise, read the tracker file and either set the iteration or
    # mark it as a release checkpoint.
    iteration = 0
    release = False
    with open(tracker_filename, 'r') as f:
        metastring = f.read().strip()
        try:
            iteration = int(metastring)
        except ValueError:
            release = metastring == 'release'
            if not release:
                print_rank_0('ERROR: Invalid metadata file {}. Exiting'.format(
                    tracker_filename))
                sys.exit()

    assert iteration > 0 or release, 'error parsing metadata file {}'.format(
        tracker_filename)

    # Checkpoint.
    checkpoint_name = get_checkpoint_name(load_dir, iteration, release)
    print_rank_0(
        f' loading checkpoint from {args.load} at iteration {iteration}')

    # Load the checkpoint.
    try:
        state_dict = torch.load(checkpoint_name, map_location='cpu')
    except ModuleNotFoundError:
        from megatron.fp16_deprecated import loss_scaler
        # For backward compatibility.
        print_rank_0(' > deserializing using the old code structure ...')
        sys.modules['fp16.loss_scaler'] = sys.modules[
            'megatron.fp16_deprecated.loss_scaler']
        sys.modules['megatron.fp16.loss_scaler'] = sys.modules[
            'megatron.fp16_deprecated.loss_scaler']
        state_dict = torch.load(checkpoint_name, map_location='cpu')
        sys.modules.pop('fp16.loss_scaler', None)
        sys.modules.pop('megatron.fp16.loss_scaler', None)
    except BaseException:
        print_rank_0('could not load the checkpoint')
        sys.exit()

    # set checkpoint version
    set_checkpoint_version(state_dict.get('checkpoint_version', 0))

    # Set iteration.
    if args.finetune or release:
        iteration = 0
    else:
        try:
            iteration = state_dict['iteration']
        except KeyError:
            try:  # Backward compatible with older checkpoints
                iteration = state_dict['total_iters']
            except KeyError:
                print_rank_0('A metadata file exists but unable to load '
                             'iteration from checkpoint {}, exiting'.format(
                                 checkpoint_name))
                sys.exit()

    # Check arguments.
    assert args.consumed_train_samples == 0
    assert args.consumed_valid_samples == 0
    if 'args' in state_dict:
        checkpoint_args = state_dict['args']
        check_checkpoint_args(checkpoint_args)
        args.consumed_train_samples = getattr(checkpoint_args,
                                              'consumed_train_samples', 0)
        update_num_microbatches(consumed_samples=args.consumed_train_samples)
        args.consumed_valid_samples = getattr(checkpoint_args,
                                              'consumed_valid_samples', 0)
    else:
        print_rank_0('could not find arguments in the checkpoint ...')

    # Model.
    if len(model) == 1:
        model[0].load_state_dict(state_dict['model'], strict=strict)
    else:
        for i in range(len(model)):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
            model[i].load_state_dict(state_dict['model%d' % i], strict=strict)

    # Fix up query/key/value matrix ordering if needed
    checkpoint_version = get_checkpoint_version()
    print_rank_0(f' checkpoint version {checkpoint_version}')
    fix_query_key_value_ordering(model, checkpoint_version)

    # Optimizer.
    if not release and not args.finetune and not args.no_load_optim:
        try:
            if optimizer is not None:
                optimizer.load_state_dict(state_dict['optimizer'])
            if lr_scheduler is not None:
                lr_scheduler.load_state_dict(state_dict['lr_scheduler'])
        except KeyError:
            print_rank_0('Unable to load optimizer from checkpoint {}. '
                         'Specify --no-load-optim or --finetune to prevent '
                         'attempting to load the optimizer state, '
                         'exiting ...'.format(checkpoint_name))
            sys.exit()

    # rng states.
    if not release and not args.finetune and not args.no_load_rng:
        try:
            random.setstate(state_dict['random_rng_state'])
            np.random.set_state(state_dict['np_rng_state'])
            torch.set_rng_state(state_dict['torch_rng_state'])
            torch.cuda.set_rng_state(state_dict['cuda_rng_state'])
            # Check for empty states array
            if not state_dict['rng_tracker_states']:
                raise KeyError
            mpu.get_cuda_rng_tracker().set_states(
                state_dict['rng_tracker_states'])
        except KeyError:
            print_rank_0('Unable to load rng state from checkpoint {}. '
                         'Specify --no-load-rng or --finetune to prevent '
                         'attempting to load the rng state, '
                         'exiting ...'.format(checkpoint_name))
            sys.exit()

    # Some utilities want to load a checkpoint without distributed being initialized
    if torch.distributed.is_initialized():
        torch.distributed.barrier()

    print_rank_0(f'  successfully loaded checkpoint from {args.load} '
                 f'at iteration {iteration}')

    return iteration
Example #4
0
def save_checkpoint(iteration, model, optimizer, lr_scheduler):
    """Save a model checkpoint."""
    args = get_args()

    # Only rank zero of the data parallel writes to the disk.
    model = utils.unwrap_model(model)

    print_rank_0('saving checkpoint at iteration {:7d} to {}'.format(
        iteration, args.save))

    if not torch.distributed.is_initialized() or mpu.get_data_parallel_rank(
    ) == 0:

        # Arguments, iteration, and model.
        state_dict = {}
        state_dict['args'] = args
        state_dict['checkpoint_version'] = 3.0
        state_dict['iteration'] = iteration
        if len(model) == 1:
            state_dict['model'] = model[0].state_dict_for_save_checkpoint()
        else:
            for i in range(len(model)):
                mpu.set_virtual_pipeline_model_parallel_rank(i)
                state_dict['model%d' %
                           i] = model[i].state_dict_for_save_checkpoint()

        # Optimizer stuff.
        if not args.no_save_optim:
            if optimizer is not None:
                state_dict['optimizer'] = optimizer.state_dict()
            if lr_scheduler is not None:
                state_dict['lr_scheduler'] = lr_scheduler.state_dict()

        # RNG states.
        if not args.no_save_rng:
            state_dict['random_rng_state'] = random.getstate()
            state_dict['np_rng_state'] = np.random.get_state()
            state_dict['torch_rng_state'] = torch.get_rng_state()
            state_dict['cuda_rng_state'] = torch.cuda.get_rng_state()
            state_dict['rng_tracker_states'] \
                = mpu.get_cuda_rng_tracker().get_states()

        # Save.
        checkpoint_name = get_checkpoint_name(args.save, iteration)
        ensure_directory_exists(checkpoint_name)
        torch.save(state_dict, checkpoint_name)

    # Wait so everyone is done (necessary)
    if torch.distributed.is_initialized():
        torch.distributed.barrier()

    print_rank_0(
        '  successfully saved checkpoint at iteration {:7d} to {}'.format(
            iteration, args.save))

    # And update the latest iteration
    if not torch.distributed.is_initialized() or torch.distributed.get_rank(
    ) == 0:
        tracker_filename = get_checkpoint_tracker_filename(args.save)
        with open(tracker_filename, 'w') as f:
            f.write(str(iteration))

    # Wait so everyone is done (not necessary)
    if torch.distributed.is_initialized():
        torch.distributed.barrier()
Example #5
0
def forward_backward_pipelining_with_interleaving(forward_step_func,
                                                  data_iterator, model,
                                                  optimizer, timers,
                                                  forward_only):
    """Run interleaved 1F1B schedule (model split into model chunks), with
    communication between pipeline stages as needed.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
    input_tensors = [[] for _ in range(len(model))]
    output_tensors = [[] for _ in range(len(model))]
    losses_reduced = []
    if not forward_only:
        output_tensor_grads = [[] for _ in range(len(model))]

    pipeline_parallel_size = mpu.get_pipeline_model_parallel_world_size()
    pipeline_parallel_rank = mpu.get_pipeline_model_parallel_rank()

    args = get_args()
    tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size)

    # Compute number of warmup and remaining microbatches.
    num_model_chunks = len(model)
    num_microbatches = get_num_microbatches() * num_model_chunks
    all_warmup_microbatches = False
    if forward_only:
        num_warmup_microbatches = num_microbatches
    else:
        # Run all forward passes and then all backward passes if number of
        # microbatches is just the number of pipeline stages.
        # Otherwise, perform (num_model_chunks-1)*pipeline_parallel_size on
        # all workers, followed by more microbatches after depending on
        # stage ID (more forward passes for earlier stages, later stages can
        # immediately start with 1F1B).
        if get_num_microbatches() == pipeline_parallel_size:
            num_warmup_microbatches = num_microbatches
            all_warmup_microbatches = True
        else:
            num_warmup_microbatches = \
                (pipeline_parallel_size - pipeline_parallel_rank - 1) * 2
            num_warmup_microbatches += (num_model_chunks -
                                        1) * pipeline_parallel_size
            num_warmup_microbatches = min(num_warmup_microbatches,
                                          num_microbatches)
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

    def get_model_chunk_id(microbatch_id, forward):
        """Helper method to get the model chunk ID given the iteration number."""
        microbatch_id_in_group = microbatch_id % (pipeline_parallel_size *
                                                  num_model_chunks)
        model_chunk_id = microbatch_id_in_group // pipeline_parallel_size
        if not forward:
            model_chunk_id = (num_model_chunks - model_chunk_id - 1)
        return model_chunk_id

    def forward_step_helper(microbatch_id):
        """Helper method to run forward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        forward_step())."""
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=True)
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

        # forward step
        if mpu.is_pipeline_first_stage():
            if len(input_tensors[model_chunk_id]) == \
                    len(output_tensors[model_chunk_id]):
                input_tensors[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id][-1]
        output_tensor = forward_step(forward_step_func,
                                     data_iterator[model_chunk_id],
                                     model[model_chunk_id], input_tensor,
                                     losses_reduced)
        output_tensors[model_chunk_id].append(output_tensor)

        # if forward-only, no need to save tensors for a backward pass
        if forward_only:
            input_tensors[model_chunk_id].pop()
            output_tensors[model_chunk_id].pop()

        return output_tensor

    def backward_step_helper(microbatch_id):
        """Helper method to run backward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        backward_step())."""
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=False)
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

        if mpu.is_pipeline_last_stage():
            if len(output_tensor_grads[model_chunk_id]) == 0:
                output_tensor_grads[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id].pop(0)
        output_tensor = output_tensors[model_chunk_id].pop(0)
        output_tensor_grad = output_tensor_grads[model_chunk_id].pop(0)
        input_tensor_grad = \
            backward_step(optimizer,
                          input_tensor,
                          output_tensor,
                          output_tensor_grad)

        return input_tensor_grad

    # Run warmup forward passes.
    mpu.set_virtual_pipeline_model_parallel_rank(0)
    input_tensors[0].append(
        p2p_communication.recv_forward(tensor_shape, timers=timers))
    for k in range(num_warmup_microbatches):
        output_tensor = forward_step_helper(k)

        # Determine if tensor should be received from previous stage.
        next_forward_model_chunk_id = get_model_chunk_id(k + 1, forward=True)
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            if next_forward_model_chunk_id == 0:
                recv_prev = False
        if k == (num_microbatches - 1):
            recv_prev = False

        # Don't send tensor downstream if on last stage.
        if mpu.is_pipeline_last_stage():
            output_tensor = None

        # Send and receive tensors as appropriate (send tensors computed
        # in this iteration; receive tensors for next iteration).
        if k == (num_warmup_microbatches - 1) and not forward_only and \
                not all_warmup_microbatches:
            input_tensor_grad = None
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                recv_next = False
            input_tensor, output_tensor_grad = \
                p2p_communication.send_forward_backward_recv_forward_backward(
                        output_tensor, input_tensor_grad,
                        recv_prev=recv_prev, recv_next=recv_next,
                        tensor_shape=tensor_shape,
                        timers=timers)
            output_tensor_grads[num_model_chunks -
                                1].append(output_tensor_grad)
        else:
            input_tensor = \
                p2p_communication.send_forward_recv_forward(
                    output_tensor, recv_prev=recv_prev,
                    tensor_shape=tensor_shape,
                    timers=timers)
        input_tensors[next_forward_model_chunk_id].append(input_tensor)
        deallocate_output_tensor(output_tensor)

    # Run 1F1B in steady state.
    for k in range(num_microbatches_remaining):
        # Forward pass.
        forward_k = k + num_warmup_microbatches
        output_tensor = forward_step_helper(forward_k)

        # Backward pass.
        backward_k = k
        input_tensor_grad = backward_step_helper(backward_k)

        # Send output_tensor and input_tensor_grad, receive input_tensor
        # and output_tensor_grad.

        # Determine if current stage has anything to send in either direction,
        # otherwise set tensor to None.
        forward_model_chunk_id = get_model_chunk_id(forward_k, forward=True)
        mpu.set_virtual_pipeline_model_parallel_rank(forward_model_chunk_id)
        if mpu.is_pipeline_last_stage():
            output_tensor = None

        backward_model_chunk_id = get_model_chunk_id(backward_k, forward=False)
        mpu.set_virtual_pipeline_model_parallel_rank(backward_model_chunk_id)
        if mpu.is_pipeline_first_stage():
            input_tensor_grad = None

        # Determine if peers are sending, and where in data structure to put
        # received tensors.
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            # First stage is ahead of last stage by (pipeline_parallel_size - 1).
            next_forward_model_chunk_id = get_model_chunk_id(
                forward_k - (pipeline_parallel_size - 1), forward=True)
            if next_forward_model_chunk_id == (num_model_chunks - 1):
                recv_prev = False
            next_forward_model_chunk_id += 1
        else:
            next_forward_model_chunk_id = get_model_chunk_id(forward_k + 1,
                                                             forward=True)

        recv_next = True
        if mpu.is_pipeline_last_stage(ignore_virtual=True):
            # Last stage is ahead of first stage by (pipeline_parallel_size - 1).
            next_backward_model_chunk_id = get_model_chunk_id(
                backward_k - (pipeline_parallel_size - 1), forward=False)
            if next_backward_model_chunk_id == 0:
                recv_next = False
            next_backward_model_chunk_id -= 1
        else:
            next_backward_model_chunk_id = get_model_chunk_id(backward_k + 1,
                                                              forward=False)

        # If last iteration, don't receive; we already received one extra
        # before the start of the for loop.
        if k == (num_microbatches_remaining - 1):
            recv_prev = False

        # Communicate tensors.
        input_tensor, output_tensor_grad = \
            p2p_communication.send_forward_backward_recv_forward_backward(
                    output_tensor, input_tensor_grad,
                    recv_prev=recv_prev, recv_next=recv_next,
                    tensor_shape=tensor_shape, timers=timers)
        deallocate_output_tensor(output_tensor)

        # Put input_tensor and output_tensor_grad in data structures in the
        # right location.
        if recv_prev:
            input_tensors[next_forward_model_chunk_id].append(input_tensor)
        if recv_next:
            output_tensor_grads[next_backward_model_chunk_id].append(
                output_tensor_grad)

    # Run cooldown backward passes (flush out pipeline).
    if not forward_only:
        if all_warmup_microbatches:
            output_tensor_grads[num_model_chunks - 1].append(
                p2p_communication.recv_backward(tensor_shape, timers=timers))
        for k in range(num_microbatches_remaining, num_microbatches):
            input_tensor_grad = backward_step_helper(k)
            next_backward_model_chunk_id = get_model_chunk_id(k + 1,
                                                              forward=False)
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                if next_backward_model_chunk_id == (num_model_chunks - 1):
                    recv_next = False
            if k == (num_microbatches - 1):
                recv_next = False
            output_tensor_grads[next_backward_model_chunk_id].append(
                p2p_communication.send_backward_recv_backward(
                    input_tensor_grad,
                    recv_next=recv_next,
                    tensor_shape=tensor_shape,
                    timers=timers))

    return losses_reduced
Example #6
0
def get_model(model_provider_func,
              model_type=ModelType.encoder_or_decoder,
              wrap_with_ddp=True):
    """Build the model."""
    args = get_args()
    args.model_type = model_type

    # Build model.
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
        assert model_type != ModelType.encoder_and_decoder, \
            "Interleaved schedule not supported for model with both encoder and decoder"
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
            this_model = model_provider_func(pre_process=pre_process,
                                             post_process=post_process)
            this_model.model_type = model_type
            model.append(this_model)
    else:
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
        add_encoder = True
        add_decoder = True
        if model_type == ModelType.encoder_and_decoder:
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                assert args.pipeline_model_parallel_split_rank is not None, \
                    "Split rank needs to be specified for model with both encoder and decoder"
                rank = mpu.get_pipeline_model_parallel_rank()
                split_rank = args.pipeline_model_parallel_split_rank
                world_size = mpu.get_pipeline_model_parallel_world_size()
                pre_process = rank == 0 or rank == split_rank
                post_process = (rank == (split_rank -
                                         1)) or (rank == (world_size - 1))
                add_encoder = mpu.is_pipeline_stage_before_split()
                add_decoder = mpu.is_pipeline_stage_after_split()
            model = model_provider_func(pre_process=pre_process,
                                        post_process=post_process,
                                        add_encoder=add_encoder,
                                        add_decoder=add_decoder)
        else:
            model = model_provider_func(pre_process=pre_process,
                                        post_process=post_process)
        model.model_type = model_type

    if not isinstance(model, list):
        model = [model]

    # Set tensor model parallel attributes if not set.
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)

    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
        print(' > number of parameters on (tensor, pipeline) '
              'model parallel rank ({}, {}): {}'.format(
                  mpu.get_tensor_model_parallel_rank(),
                  mpu.get_pipeline_model_parallel_rank(),
                  sum([
                      sum([p.nelement() for p in model_module.parameters()])
                      for model_module in model
                  ])),
              flush=True)

    # GPU allocation.
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]

    if wrap_with_ddp:
        if args.DDP_impl == 'torch':
            i = torch.cuda.current_device()
            model = [
                torchDDP(model_module,
                         device_ids=[i],
                         output_device=i,
                         process_group=mpu.get_data_parallel_group())
                for model_module in model
            ]

        elif args.DDP_impl == 'local':
            model = [
                LocalDDP(model_module, args.accumulate_allreduce_grads_in_fp32,
                         args.use_contiguous_buffers_in_local_ddp)
                for model_module in model
            ]
            # broad cast params from data parallel src rank to other data parallel ranks
            if args.data_parallel_random_init:
                for model_module in model:
                    model_module.broadcast_params()
        else:
            raise NotImplementedError('Unknown DDP implementation specified: '
                                      '{}. Exiting.'.format(args.DDP_impl))

    return model
Example #7
0
def get_model(model_provider_func):
    """Build the model."""
    args = get_args()

    # Build model.
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
            this_model = model_provider_func(pre_process=pre_process,
                                             post_process=post_process)
            model.append(this_model)
    else:
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
        model = model_provider_func(pre_process=pre_process,
                                    post_process=post_process)

    if not isinstance(model, list):
        model = [model]

    # Set tensor model parallel attributes if not set.
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)

    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
        print(' > number of parameters on (tensor, pipeline) '
              'model parallel rank ({}, {}): {}'.format(
                  mpu.get_tensor_model_parallel_rank(),
                  mpu.get_pipeline_model_parallel_rank(),
                  sum([
                      sum([p.nelement() for p in model_module.parameters()])
                      for model_module in model
                  ])),
              flush=True)

    # GPU allocation.
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]

    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
        model = [
            torchDDP(model_module,
                     device_ids=[i],
                     output_device=i,
                     process_group=mpu.get_data_parallel_group())
            for model_module in model
        ]
        return model

    if args.DDP_impl == 'local':
        model = [
            LocalDDP(model_module, args.accumulate_allreduce_grads_in_fp32,
                     args.use_contiguous_buffers_in_ddp)
            for model_module in model
        ]
        return model

    raise NotImplementedError('Unknown DDP implementation specified: {}. '
                              'Exiting.'.format(args.DDP_impl))