Example #1
0
def main():
    """Main program."""
    args = get_args()

    if args.num_layers_per_virtual_pipeline_stage is not None:
        print("Interleaved pipeline schedule is not yet supported for text generation.")
        exit()

    if args.task == 'LAMBADA':
        eval_metric = 'accuracy'
    elif args.task == 'WIKITEXT103':
        eval_metric = 'loss'
    else:
        raise NotImplementedError('{} task is not implemented.'.format(
            args.task))

    # Set up model and load checkpoint.
    model = get_model(get_model_provider(eval_metric), wrap_with_ddp=False)
    if args.load is not None:
        _ = load_checkpoint(model, None, None)

    assert len(model) == 1, "Above condition should have caught this"
    model = model[0]

    # Data stuff.
    dataset = build_dataset(args.task)
    dataloader = build_data_loader(dataset, args.micro_batch_size,
                                   args.num_workers, drop_last=False)

    # Run evaluation.
    evaluate_and_print_results(args.task, dataloader, model, eval_metric)

    print_rank_0('done :-)')
Example #2
0
def main():
    """Main program."""
    args = get_args()

    if args.task == 'LAMBADA':
        eval_metric = 'accuracy'
    elif args.task == 'WIKITEXT103':
        eval_metric = 'loss'
    else:
        raise NotImplementedError('{} task is not implemented.'.format(
            args.task))

    # Set up model and load checkpoint.
    model = get_model(get_model_provider(eval_metric))
    if args.load is not None:
        _ = load_checkpoint(model, None, None)

    # Data stuff.
    dataset = build_dataset(args.task)
    dataloader = build_data_loader(dataset,
                                   args.batch_size,
                                   args.num_workers,
                                   drop_last=False)

    # Run evaluation.
    evaluate_and_print_results(args.task, dataloader, model, eval_metric)

    print_rank_0('done :-)')
Example #3
0
    def __init__(self):
        args = get_args()
        self.embedding_size = args.hidden_size
        self.faiss_use_gpu = args.faiss_use_gpu
        self.evidence_embedder_obj = None
        self.evidence_dataset = None
        self.mips_index = None
        self.eval_dataset = None

        # Get Evidence (Wikipedia) dataset
        self.get_evidence_dataset()

        # Load query encoder checkpoint
        only_query_model = True
        if args.biencoder_shared_query_context_model:
            only_query_model = False

        model = get_model(lambda: biencoder_model_provider(only_query_model=\
            only_query_model, biencoder_shared_query_context_model=\
            args.biencoder_shared_query_context_model))

        self.model = load_biencoder_checkpoint(
            model, only_query_model=only_query_model)

        assert len(self.model) == 1
        self.model[0].eval()

        # Load faiss indexer
        self.faiss_wrapper()
def main():
    """Main program."""

    initialize_megatron(extra_args_provider=add_text_generate_args,
                        args_defaults={
                            'tokenizer_type': 'GPT2BPETokenizer',
                            'no_load_rng': True,
                            'no_load_optim': True
                        })

    args = get_args()
    if args.num_layers_per_virtual_pipeline_stage is not None:
        print(
            "Interleaved pipeline schedule is not yet supported for text generation."
        )
        exit()

    # Set up model and load checkpoint.
    model = get_model(model_provider)

    if args.load is not None:
        _ = load_checkpoint(model, None, None)

    assert len(model) == 1, "Above condition should have caught this"
    model = model[0]

    # Generate samples.
    if args.num_samples == 0:
        args.micro_batch_size = 1
        if args.sample_input_file != None:
            generate_samples_input_from_file(model)
        else:
            generate_samples_interactive(model)
    else:
        generate_and_write_samples_unconditional(model)
Example #5
0
 def load_attributes(self):
     """Load the necessary attributes: model, dataloader and empty BlockData"""
     model = get_model(
         lambda: general_ict_model_provider(only_block_model=True))
     self.model = load_ict_checkpoint(
         model,
         only_block_model=True,
         from_realm_chkpt=self.using_realm_chkpt)
     self.model.eval()
     self.dataset = get_ict_dataset()
     self.dataloader = iter(
         get_one_epoch_dataloader(self.dataset, self.batch_size))
     self.block_data = BlockData(load_from_path=False)
Example #6
0
def main():
    """Main program."""

    initialize_megatron(extra_args_provider=add_text_generate_args,
                        args_defaults={'tokenizer_type': 'GPT2BPETokenizer'})

    # Set up model and load checkpoint.
    model = get_model(model_provider)
    args = get_args()
    if args.load is not None:
        _ = load_checkpoint(model, None, None)

    # Generate samples.
    if args.num_samples == 0:
        args.batch_size = 1
        if args.sample_input_file != "":
            generate_samples_input_from_file(model)
        else:
            generate_samples_interactive(model)
    else:
        generate_and_write_samples_unconditional(model)
Example #7
0
    def load_attributes(self):
        """
        Load the necessary attributes: model, dataloader and empty BlockData
        """
        only_context_model = True
        if self.biencoder_shared_query_context_model:
            only_context_model = False

        model = get_model(lambda: biencoder_model_provider(only_context_model \
            = only_context_model, biencoder_shared_query_context_model = \
            self.biencoder_shared_query_context_model))

        self.model = load_biencoder_checkpoint(
            model, only_context_model=only_context_model)

        assert len(self.model) == 1
        self.model[0].eval()

        self.dataset = get_open_retrieval_wiki_dataset()
        self.dataloader = iter(get_one_epoch_dataloader(self.dataset, \
            self.batch_size))

        self.evidence_embedder_obj = OpenRetreivalDataStore( \
            load_from_path=False)
Example #8
0
def main():

    args = get_args()
    if args.api_prompt:
        # obtain the generations by calling the api
        generate_samples_by_calling_api()
        return

    if args.num_layers_per_virtual_pipeline_stage is not None:
        print(
            "Interleaved pipeline schedule is not yet supported for text generation."
        )
        exit()

    # Set up model and load checkpoint.
    model = get_model(model_provider, wrap_with_ddp=False)
    if args.load is not None:
        _ = load_checkpoint(model, None, None)

    assert len(model) == 1, "Above condition should have caught this"
    model = model[0]

    # perform the prompting
    generate_samples_by_prompting_input_from_file(model)
Example #9
0
def main():
    """Main program."""
    drmode = 0
    mode = 0
    initialize_megatron(extra_args_provider=add_text_generate_args,
                        args_defaults={'tokenizer_type': 'GPT2BPETokenizer'})

    # Set up model and load checkpoint.
    model = get_model(model_provider)
    args = get_args()
    tokenizer = get_tokenizer()
    if args.load is not None:
        _ = load_checkpoint(model, None, None)

    # Generate samples.
    if drmode == 1:
        f = open("questions.txt", 'r')
        if mode == 0:
            dir = "qa_345M"
        else:
            dir = "qa_345M_ip"
    if drmode == 0:
        f = open("para.txt", 'r')
        if mode == 0:
            dir = "pa_345M"
        else:
            dir = "pa_345M_ip"

    qs = f.readlines()
    question_list = []
    import json
    for i in qs:
        question_list.append(i)
    f.close()
    fdir = os.listdir()

    if not (dir in fdir):
        os.mkdir(dir)
    import random
    import jsonlines
    while True:

        q = random.choice(question_list)
        lists = os.listdir(dir)
        question = q
        lts = question[:20] + '.jsonl'
        if (lts in lists):
            continue
        #str=generate_token_tensor(str,tokenizer)

        if mode == 0:
            output_string = generate_one_text(model, tokenizer, args, question)
            print(question, output_string)

            text_dir = dir + "/"
            already = []
            with jsonlines.open(text_dir + question[:20] + '.jsonl',
                                mode='w') as writer:

                otc = {}
                otc['question'] = question
                otc['answer'] = output_string
                #print(otc)
                writer.write(otc)
        else:
            output_string, output_scores = generate_string(
                model, tokenizer, args, question)
            ranklist = np.argsort(output_scores)
            best_score = output_scores[ranklist[0]]
            text_dir = dir + "/"
            already = []
            with jsonlines.open(text_dir + question[:20] + '.jsonl',
                                mode='w') as writer:

                otc = {}
                otc['question'] = question
                otc['answer'] = output_string[ranklist[0]]
                #print(otc)
                writer.write(otc)
Example #10
0
if __name__ == "__main__":
    initialize_megatron(extra_args_provider=add_text_generate_args,
                        args_defaults={
                            'tokenizer_type': 'GPT2BPETokenizer',
                            'no_load_rng': True,
                            'no_load_optim': True
                        })

    args = get_args()
    if args.num_layers_per_virtual_pipeline_stage is not None:
        print(
            "Interleaved pipeline schedule is not yet supported for text generation."
        )
        exit()
    # Set up model and load checkpoint
    model = get_model(model_provider, wrap_with_ddp=False)

    if args.load is not None:
        _ = load_checkpoint(model, None, None)

    assert len(model) == 1, "Above condition should have caught this"
    model = model[0]
    if mpu.is_pipeline_first_stage() and mpu.get_tensor_model_parallel_rank(
    ) == 0:
        server = MegatronServer(model)
        server.run("0.0.0.0")

    while True:
        choice = torch.cuda.LongTensor(1)
        torch.distributed.broadcast(choice, 0)
        if choice[0].item() == 0: