Example #1
0
 def forward(self, inps):
     if self._opr.name == "MaxPool2d":
         return F.max_pool2d(
             inps[0],
             kernel_size=self.param["kernel_size"],
             stride=self.param["stride"],
             padding=self.param["padding"],
         )
     else:
         return F.avg_pool2d(
             inps[0],
             kernel_size=self.param["kernel_size"],
             stride=self.param["stride"],
             padding=self.param["padding"],
             mode=self.param["mode"],
         )
Example #2
0
 def forward(self, x):
     bottom_up_features = self.bottom_up(x)
     bottom_up_features = bottom_up_features[::-1]
     results = []
     prev_features = self.lateral_convs[0](bottom_up_features[0])
     results.append(self.output_convs[0](prev_features))
     for features, lateral_conv, output_conv in zip(bottom_up_features[1:],
                                                    self.lateral_convs[1:],
                                                    self.output_convs[1:]):
         top_down_features = F.interpolate(prev_features,
                                           scale_factor=2,
                                           mode="BILINEAR")
         lateral_features = lateral_conv(features)
         prev_features = lateral_features + top_down_features
         results.append(output_conv(prev_features))
     # p6
     last_p6 = F.max_pool2d(results[0], kernel_size=1, stride=2, padding=0)
     results.insert(0, last_p6)
     return results
Example #3
0
 def forward(self, x):
     if not self.training or self.drop_prob <= 0.0:
         return x
     _, c, h, w = x.shape
     pad_h = max((self.kernel_size - 1), 0)
     pad_w = max((self.kernel_size - 1), 0)
     numel = c * h * w
     gamma = self.drop_prob * (w * h) / (self.kernel_size**2) / (
         (w - self.kernel_size + 1) * (h - self.kernel_size + 1))
     mask = mge.random.uniform(0, 1, size=(1, c, h, w))
     mask[mask < gamma] = 1
     mask[mask >= gamma] = 0
     mask = F.max_pool2d(mask, [self.kernel_size, self.kernel_size],
                         stride=1,
                         padding=(pad_h // 2, pad_w // 2))
     mask = 1 - mask
     x1 = F.expand_dims(1.0 * numel / mask.sum(axis=0), axis=0)
     y = F.matmul(F.matmul(x, mask), x1)
     return y
Example #4
0
 def fwd(data):
     out = F.max_pool2d(data, 2, 2)
     out = F.avg_pool2d(out, 2, 2)
     return out
Example #5
0
     True,
     1000,
 ),
 ("matinv", MF.matinv, torch.inverse, [(10, 10)], [(30, 30)], True, 1000),
 (
     "matmul",
     MF.matmul,
     torch.matmul,
     [(64, 32), (32, 64)],
     [(2048, 1024), (1024, 2048)],
     True,
     1000,
 ),
 (
     "max_pool2d",
     lambda x: MF.max_pool2d(x, 2),
     lambda x: TF.max_pool2d(x, 2),
     [(2, 32, 16, 16)],
     [(64, 512, 16, 16)],
     True,
     1000,
 ),
 (
     "normal",
     lambda x: mge.random.normal(0, 1, x.shape),
     lambda x: torch.randn(x.shape, device="cuda"),
     [(100, 100)],
     [(64, 512, 16, 16)],
     True,
     1000,
 ),
Example #6
0
 def forward(self, x):
     return [F.max_pool2d(x, kernel_size=1, stride=2, padding=0)]