Example #1
0
def res_layer(inp, chl, stride = 1, proj = False):
	pre = inp
	inp = conv_bn(inp, 1, stride, 0, chl // 4, True)
	chl //= 4
	name = inp.name
	#Global Average Pooling
	SE = inp.mean(axis = 3).mean(axis = 2)
	sum_lay = 0
	out_lay = 0
	width = 4
	lay = FullyConnected(
		"fc0({})".format(name), SE, output_dim = chl,
		nonlinearity = ReLU()
		)
	#fc1
	lay = FullyConnected(
		"fc1({})".format(name), lay, output_dim = chl * width,
		nonlinearity = Identity()
		)
	lay = lay.reshape(inp.shape[0], chl, width)
	lay = Softmax("softmax({})".format(name), lay, axis = 2)
	for i in range(width):
		if i == 0:
			inp_lay = inp
		else:
			inp_lay = O.Concat([inp[:, width:, :, :], inp[:, :width, :, :]], axis = 1)
		inp_lay = inp_lay * lay[:, :, i].dimshuffle(0, 1, 'x', 'x')
	inp = inp_lay
	chl *= 4
	inp = conv_bn(inp, 3, 1, 1, chl // 4, True)
	inp = conv_bn(inp, 1, 1, 0, chl, False)
	if proj:
		pre = conv_bn(pre, 1, stride, 0, chl, False)
	name = inp.name
	#Global Average Pooling
	SE = inp.mean(axis = 3).mean(axis = 2)
	sum_lay = 0
	out_lay = 0
	width = 4
	lay = FullyConnected(
		"fc0({})".format(name), SE, output_dim = chl,
		nonlinearity = ReLU()
		)
	#fc1
	lay = FullyConnected(
		"fc1({})".format(name), lay, output_dim = chl * width,
		nonlinearity = Identity()
		)
	lay = lay.reshape(inp.shape[0], chl, width)
	lay = Softmax("softmax({})".format(name), lay, axis = 2)
	for i in range(width):
		if i == 0:
			inp_lay = inp
		else:
			inp_lay = O.Concat([inp[:, width:, :, :], inp[:, :width, :, :]], axis = 1)
		inp_lay = inp_lay * lay[:, :, i].dimshuffle(0, 1, 'x', 'x')
	inp = inp_lay
	inp = arith.ReLU(inp + pre)
	return inp
Example #2
0
def make_network(minibatch_size=64):
    patch_size = 32
    inp = DataProvider("data",
                       shape=(minibatch_size, 3, patch_size, patch_size))
    label = DataProvider("label", shape=(minibatch_size, ))

    k, l = 20, (40 - 4) // 3
    lay = bn_relu_conv(inp, 3, 1, 1, k, False, False)

    for i in range(3):
        lay = transition(dense_block(lay, k, l), i)

    #global average pooling
    print(lay.partial_shape)
    feature = lay.mean(axis=2).mean(axis=2)
    #feature = Pooling2D("glbpoling", lay, window = 8, stride = 8, mode = "AVERAGE")
    pred = Softmax(
        "pred",
        FullyConnected("fc0", feature, output_dim=10, nonlinearity=Identity()))

    network = Network(outputs=[pred])
    network.loss_var = CrossEntropyLoss(pred, label)

    info = CInfo()
    info.get_complexity(network.outputs).as_table().show()

    return network
Example #3
0
def make_network(minibatch_size=64):
    patch_size = 32
    inp = DataProvider("data",
                       shape=(minibatch_size, 3, patch_size, patch_size))
    label = DataProvider("label", shape=(minibatch_size, ))

    lay = bn_relu_conv(inp, 3, 1, 1, 16, False, False)

    k, l = 24, (100 - 4) // 3
    for i in range(3):
        lay = transition(dense_block(lay, k, l, False), i)

    feature = lay
    pred = Softmax(
        "pred",
        FullyConnected("fc0",
                       feature,
                       output_dim=10,
                       W=G(mean=0, std=(1 / feature.partial_shape[1])**0.5),
                       b=C(0),
                       nonlinearity=Identity()))

    network = Network(outputs=[pred])
    network.loss_var = CrossEntropyLoss(pred, label)
    return network
Example #4
0
def make_network(minibatch_size=128, debug=False):
    patch_size = 32
    inp = DataProvider("data",
                       shape=(minibatch_size, 3, patch_size, patch_size),
                       dtype=np.float32)
    label = DataProvider("label", shape=(minibatch_size, ), dtype=np.int32)

    lay = conv_bn(inp, 3, 1, 1, 16, True)

    n = 4
    lis = [16 * 4, 32 * 4, 64 * 4]
    for i in range(len(lis)):
        lay = res_block(lay, lis[i], i, n)

    fc = attentional_active_pooling(lay, 10)
    pred = Softmax("pred", fc)

    network = Network(outputs=[pred])
    network.loss_var = CrossEntropyLoss(pred, label)
    """
	if debug:
		visitor = NetworkVisitor(network.loss_var)
		for i in visitor.all_oprs:
			print(i)
			print(i.partial_shape)
			print("input = ", i.inputs)
			print("output = ", i.outputs)
			print()
	"""

    return network
Example #5
0
def make_network(minibatch_size=128):
    patch_size = 32
    inp = DataProvider("data",
                       shape=(minibatch_size, 15, patch_size, patch_size))
    label = DataProvider("label", shape=(minibatch_size, ))

    #lay = bn_relu_conv(inp, 3, 1, 1, 16, False, False)
    lay, conv = conv_bn(inp, 3, 1, 1, 16, True)
    out = [conv]
    for chl in [32, 64, 128]:
        for i in range(10):
            lay, conv = conv_bn(lay, 3, 1, 1, chl, True)
            out.append(conv)
        if chl != 128:
            lay = b_resize("pooling{}".format(chl), lay)
            lay = Pooling2D("pooling{}".format(chl), lay, window=2, mode="MAX")

    #global average pooling
    print(lay.partial_shape)
    feature = lay.mean(axis=2).mean(axis=2)
    #feature = Pooling2D("glbpoling", lay, window = 8, stride = 8, mode = "AVERAGE")
    pred = Softmax(
        "pred",
        FullyConnected("fc0",
                       feature,
                       output_dim=10,
                       W=G(mean=0, std=(1 / feature.partial_shape[1])**0.5),
                       b=C(0),
                       nonlinearity=Identity()))

    network = Network(outputs=[pred] + out)
    network.loss_var = CrossEntropyLoss(pred, label)
    return network
Example #6
0
def make_network(minibatch_size=128):
    patch_size = 32
    inp = DataProvider("data",
                       shape=(minibatch_size, 3, patch_size, patch_size))
    label = DataProvider("label", shape=(minibatch_size, ))

    lay = conv_bn(inp, 3, 1, 1, 16, True)

    n = 3
    lis = [16, 32, 64]
    for i in lis:
        lay = res_block(lay, i, n)

    #global average pooling
    feature = lay.mean(axis=2).mean(axis=2)
    pred = Softmax(
        "pred",
        FullyConnected("fc0",
                       feature,
                       output_dim=10,
                       W=G(mean=0, std=(2 / 64)**0.5),
                       b=C(0),
                       nonlinearity=Identity()))

    network = Network(outputs=[pred])
    network.loss_var = CrossEntropyLoss(pred, label)
    return network
Example #7
0
def make_network(minibatch_size=64):
    patch_size = 32
    inp = DataProvider("data",
                       shape=(minibatch_size, 3, patch_size, patch_size))
    label = DataProvider("label", shape=(minibatch_size, ))

    lay = bn_relu_conv(inp, 3, 1, 1, 16, False, False)

    k, l = 12, (40 - 4) // 3
    for i in range(3):
        lay = transition(dense_block(lay, k, l), i)

    #global average pooling
    print(lay.partial_shape)
    feature = lay.mean(axis=2).mean(axis=2)
    #feature = Pooling2D("glbpoling", lay, window = 8, stride = 8, mode = "AVERAGE")
    pred = Softmax(
        "pred",
        FullyConnected("fc0",
                       feature,
                       output_dim=10,
                       W=G(mean=0, std=(1 / feature.partial_shape[1])**0.5),
                       b=C(0),
                       nonlinearity=Identity()))

    network = Network(outputs=[pred])
    network.loss_var = CrossEntropyLoss(pred, label)
    return network
Example #8
0
def make_network(minibatch_size = 128, debug = False):
	patch_size = 32
	inp = DataProvider("data", shape = (minibatch_size, 3, patch_size, patch_size), dtype = np.float32)
	label = DataProvider("label", shape = (minibatch_size, ), dtype = np.int32)

	lay = conv_bn(inp, 3, 1, 1, 16, True)

	n = 18
	lis = [16, 32, 64]
	for i in lis:
		lay = res_block(lay, i, n)
	
	#global average pooling
	#feature = lay.mean(axis = 2).mean(axis = 2)
	feature = Pooling2D("pooling", lay, window = 8, stride = 8, padding = 0, mode = "AVERAGE")
	pred = Softmax("pred", FullyConnected(
		"fc0", feature, output_dim = 10,
		nonlinearity = Identity()
		))
	
	network = Network(outputs = [pred])
	network.loss_var = CrossEntropyLoss(pred, label)
	
	if debug:
		visitor = NetworkVisitor(network.loss_var)
		for i in visitor.all_oprs:
			print(i)
			print(i.partial_shape)
			print("input = ", i.inputs)
			print("output = ", i.outputs)
			print()

	return network
Example #9
0
def make_network(minibatch_size = 128):
	patch_size = 32
	inp = DataProvider("data", shape = (minibatch_size, 3, patch_size, patch_size))
	label = DataProvider("label", shape = (minibatch_size, ))

	#lay = bn_relu_conv(inp, 3, 1, 1, 16, False, False)
	lay, conv = conv_bn(inp, 3, 1, 1, 16, True)
	out = [conv]
	for chl in [32 * 3, 64 * 3, 128 * 3]:
		for i in range(10):
			lay, conv1, conv2 = xcep_layer(lay, chl)
			out.append(conv1)
			out.append(conv2)
		if chl != 128 * 3:
			lay = Pooling2D("pooling{}".format(chl), lay, window = 2, mode = "MAX")

	
	#global average pooling
	print(lay.partial_shape)
	feature = lay.mean(axis = 2).mean(axis = 2)
	#feature = Pooling2D("glbpoling", lay, window = 8, stride = 8, mode = "AVERAGE")
	W = ortho_group.rvs(feature.partial_shape[1])
	W = W[:, :10]
	W = ConstProvider(W)
	b = ConstProvider(np.zeros((10, )))
	pred = Softmax("pred", FullyConnected(
		"fc0", feature, output_dim = 10,
		W = W,
		b = b,
		nonlinearity = Identity()
		))
	
	network = Network(outputs = [pred] + out)
	network.loss_var = CrossEntropyLoss(pred, label)
	return network
Example #10
0
def make_network(minibatch_size=128, debug=False):
    patch_size = 32
    inp = DataProvider("data",
                       shape=(minibatch_size, 3, patch_size, patch_size),
                       dtype=np.float32)
    label = DataProvider("label", shape=(minibatch_size, ), dtype=np.int32)

    lay, w = conv_bn(inp, 3, 1, 1, 16, True)
    lis_w = [w]

    n = 3
    lis = [16, 32, 64]
    for i in lis:
        lay, lis_new = res_block(lay, i, n)
        lis_w += lis_new

    #global average pooling
    #feature = lay.mean(axis = 2).mean(axis = 2)
    feature = Pooling2D("pooling",
                        lay,
                        window=8,
                        stride=8,
                        padding=0,
                        mode="AVERAGE")
    pred = Softmax(
        "pred",
        FullyConnected(
            "fc0",
            feature,
            output_dim=10,
            #W = G(mean = 0, std = (1 / 64)**0.5),
            #b = C(0),
            nonlinearity=Identity()))

    network = Network(outputs=[pred])
    network.loss_var = CrossEntropyLoss(pred, label)

    lmd = 1
    for w in lis_w:
        w = w.reshape(w.partial_shape[0], -1).dimshuffle(1, 0)
        w = w / ((w**2).sum(axis=0)).dimshuffle('x', 0)
        A = O.MatMul(w.dimshuffle(1, 0), w)
        network.loss_var += lmd * (
            (A - np.identity(A.partial_shape[0]))**2).mean()

    if debug:
        visitor = NetworkVisitor(network.loss_var)
        for i in visitor.all_oprs:
            print(i)
            print(i.partial_shape)
            print("input = ", i.inputs)
            print("output = ", i.outputs)
            print()

    return network
Example #11
0
def make_network(minibatch_size=128, debug=False):
    patch_size = 32
    inp = DataProvider("data",
                       shape=(minibatch_size, 3, patch_size, patch_size),
                       dtype=np.float32)
    label = DataProvider("label", shape=(minibatch_size, ), dtype=np.int32)

    lay = conv_bn(inp, 3, 1, 1, 16 * 4 * 2, True)

    n = 4 * 3
    group = 8
    lis = [16 * 4, 32 * 4, 64 * 4]
    for i in range(len(lis)):
        lay = res_block(lay, lis[i], i, n, group)

    #global average pooling
    #feature = lay.mean(axis = 2).mean(axis = 2)
    feature = Pooling2D("pooling",
                        lay,
                        window=8,
                        stride=8,
                        padding=0,
                        mode="AVERAGE")
    pred = Softmax(
        "pred",
        FullyConnected(
            "fc0",
            feature,
            output_dim=10,
            #W = G(mean = 0, std = (1 / 64)**0.5),
            #b = C(0),
            nonlinearity=Identity()))

    network = Network(outputs=[pred])
    network.loss_var = CrossEntropyLoss(pred, label)

    info = CInfo()
    info.get_complexity(network.outputs).as_table().show()
    """
	if debug:
		visitor = NetworkVisitor(network.loss_var)
		for i in visitor.all_oprs:
			print(i)
			print(i.partial_shape)
			print("input = ", i.inputs)
			print("output = ", i.outputs)
			print()
	"""

    return network
Example #12
0
def make_network(minibatch_size=128):
    patch_size = 32
    inp = DataProvider("data",
                       shape=(minibatch_size, 3, patch_size, patch_size))
    label = DataProvider("label", shape=(minibatch_size, ))

    #lay = bn_relu_conv(inp, 3, 1, 1, 16, False, False)
    lay, conv = conv_bn(inp, 3, 1, 1, 16, True)
    out = [conv]
    for chl in [32, 64, 128]:
        for i in range(10):
            lay, conv = conv_bn(lay, 3, 1, 1, chl, True)
            out.append(conv)
        if chl != 128:
            lay = Pooling2D("pooling{}".format(chl), lay, window=2, mode="MAX")

    #global average pooling
    print(lay.partial_shape)
    feature = lay.mean(axis=2).mean(axis=2)
    #feature = Pooling2D("glbpoling", lay, window = 8, stride = 8, mode = "AVERAGE")
    pred = Softmax(
        "pred",
        FullyConnected("fc0",
                       feature,
                       output_dim=10,
                       W=G(mean=0, std=(1 / feature.partial_shape[1])**0.5),
                       b=C(0),
                       nonlinearity=Identity()))

    network = Network(outputs=[pred] + out)
    network.loss_var = CrossEntropyLoss(pred, label)
    #conv1 = out[0]
    #print(conv1.inputs[1].partial_shape)
    lmd = 0.01
    for conv_lay in out:
        w = conv_lay
        #w = w.reshape(w.partial_shape[0], -1).dimshuffle(1, 0)
        w = w.dimshuffle(1, 0, 2, 3)
        w = w.reshape(w.partial_shape[0], -1).dimshuffle(1, 0)
        w = w / ((w**2).sum(axis=0)).dimshuffle('x', 0)
        A = MatMul(w.dimshuffle(1, 0), w)
        #print(A.partial_shape)
        network.loss_var += lmd * (
            (A - np.identity(A.partial_shape[0]))**2).sum()

    return network
Example #13
0
def make_network(minibatch_size=128, debug=False):
    patch_size = 32
    inp = DataProvider("data",
                       shape=(minibatch_size, 3, patch_size, patch_size),
                       dtype=np.float32)
    label = DataProvider("label", shape=(minibatch_size, ), dtype=np.int32)

    lay = conv_bn(inp, 3, 1, 1, 16, True)

    lis = [16, 32, 64]
    for i in range(len(lis)):
        #lay = res_block(lay, lis[i], i, n)
        for j in range(40):
            lay = conv_bn(lay, 3, 1, 1, lis[i], False)
        if i < len(lis) - 1:
            lay = conv_bn(lay, 2, 2, 0, lis[i + 1], True)

    #global average pooling
    feature = lay.mean(axis=2).mean(axis=2)
    pred = Softmax(
        "pred",
        FullyConnected(
            "fc0",
            feature,
            output_dim=10,
            #W = G(mean = 0, std = (1 / 64)**0.5),
            #b = C(0),
            nonlinearity=Identity()))

    network = Network(outputs=[pred])
    #info = CInfo()
    #info.get_complexity(network.outputs).as_table().show()
    network.loss_var = CrossEntropyLoss(pred, label)
    """
	if debug:
		visitor = NetworkVisitor(network.loss_var)
		for i in visitor.all_oprs:
			print(i)
			print(i.partial_shape)
			print("input = ", i.inputs)
			print("output = ", i.outputs)
			print()
	"""

    return network
Example #14
0
def make_network(minibatch_size=128):
    patch_size = 32
    inp = DataProvider("data",
                       shape=(minibatch_size, 3, patch_size, patch_size))
    label = DataProvider("label", shape=(minibatch_size, ))
    idxmap = np.zeros((128, 3, 32, 32, 4), dtype=np.int32)
    sample = IndexingRemap(inp, idxmap)
    network = Network(outputs=[sample])
    sample = FullyConnected("fc", sample, output_dim=1)
    network.loss_var = sample.sum()
    return network

    #lay = bn_relu_conv(inp, 3, 1, 1, 16, False, False)
    lay, conv = conv_bn(inp, 3, 1, 1, 32, True)
    out = [conv]
    """
	for chl in [32, 64, 128]:
		for i in range(10):
			lay, conv = conv_bn(lay, 3, 1, 1, chl, True)
			out.append(conv)
		if chl != 128:
			lay = dfpooling("pooling{}".format(chl), lay)
	"""
    chl = 32
    for i in range(3):
        lay, conv = dfconv(lay, chl, True, i == 0)

    #global average pooling
    print(lay.partial_shape)
    feature = lay.mean(axis=2).mean(axis=2)
    #feature = Pooling2D("glbpoling", lay, window = 8, stride = 8, mode = "AVERAGE")
    pred = Softmax(
        "pred",
        FullyConnected("fc0",
                       feature,
                       output_dim=10,
                       W=G(mean=0, std=(1 / feature.partial_shape[1])**0.5),
                       b=C(0),
                       nonlinearity=Identity()))

    network = Network(outputs=[pred] + out)
    network.loss_var = CrossEntropyLoss(pred, label)
    return network
Example #15
0
def make_network(minibatch_size=64):
    patch_size = 32
    inp = DataProvider("data",
                       shape=(minibatch_size, 3, patch_size, patch_size))
    label = DataProvider("label", shape=(minibatch_size, ))

    lay, w = bn_relu_conv(inp, 3, 1, 1, 16, False, False)
    lis_w = [w]

    k, l = 12, (40 - 4) // 3
    for i in range(3):
        #lay = transition(dense_block(lay, k, l), i)
        lay, lis_new = dense_block(lay, k, l)
        lis_w += lis_new
        lay, lis_new = transition(lay, i)
        lis_w += lis_new

    #global average pooling
    print(lay.partial_shape)
    feature = lay.mean(axis=2).mean(axis=2)
    #feature = Pooling2D("glbpoling", lay, window = 8, stride = 8, mode = "AVERAGE")
    pred = Softmax(
        "pred",
        FullyConnected("fc0", feature, output_dim=10, nonlinearity=Identity()))

    network = Network(outputs=[pred])
    network.loss_var = CrossEntropyLoss(pred, label)

    lmd = 0.01
    for w in lis_w:
        if w is None:
            continue
        print(w.partial_shape)
        w = w.reshape(w.partial_shape[0], -1).dimshuffle(1, 0)
        w = w / ((w**2).sum(axis=0)).dimshuffle('x', 0)
        A = O.MatMul(w.dimshuffle(1, 0), w)
        network.loss_var += lmd * (
            (A - np.identity(A.partial_shape[0]))**2).sum()

    return network
Example #16
0
def get(args):
    img_size = 224
    num_inputs = 3
    data = DataProvider('data', shape=(args.batch_size, num_inputs,
                                           img_size, img_size))

    inp = data
    f = create_bn_relu("conv1", inp, ksize=7, stride=2, pad=3, num_outputs=64,
                       has_relu=True, conv_name_fun=None,
                       args=args)
    f = Pooling2D("pool1", f, window=3, stride=2, padding=1, mode="MAX",
                  format=args.format)

    pre = [2, 3, 4, 5]
    stages = [3, 4, 6, 3]
    mid_outputs = [64, 128, 256, 512]
    enable_stride = [False, True, True, True]

    for p, s, o, es in zip(pre, stages, mid_outputs, enable_stride):
        for i in range(s):
            has_proj = False if i > 0 else True
            stride = 1 if not es or i > 0 else 2
            prefix = "{}{}".format(p, chr(ord("a") + i))
            f = create_bottleneck(prefix, f, stride, o, o * 4, args, has_proj)
            print("{}\t{}".format(prefix, f.partial_shape))

    f = Pooling2D("pool5", f, window=7, stride=7, padding=0, mode="AVERAGE",
                  format=args.format)

    f = FullyConnected("fc1000", f, output_dim=1000,
                       nonlinearity=mgsk.opr.helper.elemwise_trans.Identity())

    f = Softmax("cls_softmax", f)
    f.init_weights()

    net = RawNetworkBuilder(inputs=[data], outputs=[f])

    return net
Example #17
0
def make_network():
    batch_size = 200
    img_size = 224

    data = DataProvider("data", shape=(batch_size, 3, img_size, img_size))
    label = DataProvider("label", shape=(batch_size, ))

    f = create_conv_relu("conv1_1",
                         data,
                         ksize=3,
                         stride=1,
                         pad=1,
                         num_outputs=64)
    f = create_conv_relu("conv1_2",
                         f,
                         ksize=3,
                         stride=1,
                         pad=1,
                         num_outputs=64)
    f = CaffePooling2D("pool1", f, window=2, stride=2, padding=0, mode="MAX")

    f = create_conv_relu("conv2_1",
                         f,
                         ksize=3,
                         stride=1,
                         pad=1,
                         num_outputs=128)
    f = create_conv_relu("conv2_2",
                         f,
                         ksize=3,
                         stride=1,
                         pad=1,
                         num_outputs=128)
    f = CaffePooling2D("pool2", f, window=2, stride=2, padding=0, mode="MAX")

    f = create_conv_relu("conv3_1",
                         f,
                         ksize=3,
                         stride=1,
                         pad=1,
                         num_outputs=256)
    f = create_conv_relu("conv3_2",
                         f,
                         ksize=3,
                         stride=1,
                         pad=1,
                         num_outputs=256)
    f = create_conv_relu("conv3_3",
                         f,
                         ksize=3,
                         stride=1,
                         pad=1,
                         num_outputs=256)
    f = CaffePooling2D("pool3", f, window=2, stride=2, padding=0, mode="MAX")

    f = create_conv_relu("conv4_1",
                         f,
                         ksize=3,
                         stride=1,
                         pad=1,
                         num_outputs=512)
    f = create_conv_relu("conv4_2",
                         f,
                         ksize=3,
                         stride=1,
                         pad=1,
                         num_outputs=512)
    f = create_conv_relu("conv4_3",
                         f,
                         ksize=3,
                         stride=1,
                         pad=1,
                         num_outputs=512)
    f = CaffePooling2D("pool4", f, window=2, stride=2, padding=0, mode="MAX")

    f = create_conv_relu("conv5_1",
                         f,
                         ksize=3,
                         stride=1,
                         pad=1,
                         num_outputs=512)
    f = create_conv_relu("conv5_2",
                         f,
                         ksize=3,
                         stride=1,
                         pad=1,
                         num_outputs=512)
    f = create_conv_relu("conv5_3",
                         f,
                         ksize=3,
                         stride=1,
                         pad=1,
                         num_outputs=512)
    f = CaffePooling2D("pool5", f, window=2, stride=2, padding=0, mode="MAX")

    f = FullyConnected("fc6",
                       f,
                       output_dim=4096,
                       nonlinearity=mgsk.opr.helper.elemwise_trans.Identity())
    f = ReLU(f)

    f = FullyConnected("fc7",
                       f,
                       output_dim=4096,
                       nonlinearity=mgsk.opr.helper.elemwise_trans.Identity())
    f = ReLU(f)

    f = FullyConnected("fc8",
                       f,
                       output_dim=1000,
                       nonlinearity=mgsk.opr.helper.elemwise_trans.Identity())

    f = Softmax("cls_softmax", f)

    net = RawNetworkBuilder(inputs=[data, label],
                            outputs=[f],
                            loss=CrossEntropyLoss(f, label))
    return net
Example #18
0
conv3 = Conv2D("conv3", pooling1, kernel_shape = 3, output_nr_channel = 10, 
			W = G(mean = 0.0001, std = (1 / (5 * 3 * 3))**0.5),
			b = C(0),
			padding = (1, 1),
			nonlinearity = ReLU())
conv4 = Conv2D("conv4", conv3, kernel_shape = 3, output_nr_channel = 10,
			W = G(mean = 0.0001, std = (1 / (10 * 3 * 3))**0.5),
			b = C(0),
			padding = (1, 1),
			nonlinearity = ReLU())
pooling2 = Pooling2D("pooling2", conv4, window = (2, 2), mode = "max")

feature = pooling2.reshape((-1, 7 * 7 * 10))
fc1 = FC("fc1", feature, output_dim = 100,
			W = G(mean = 0.0001, std = (1 / 490)**0.5),
			b = C(0),
			nonlinearity = ReLU())
fc2 = FC("fc2", fc1, output_dim = 10,
			W = G(mean = 0, std = (1 / 100)**0.5),
			b = C(0),
			nonlinearity = Identity())
#output_mat = Exp(fc2) / Exp(fc2).sum(axis = 1).dimshuffle(0, 'x')
pred = Softmax("pred", fc2)

label = DataProvider(name = "label", shape = (minibatch_size, ), dtype = np.int32)
#loss = -Log(indexing_one_hot(output_mat, 1, label)).mean()
loss = CrossEntropyLoss(pred, label)

network = Network(pred, loss)
Example #19
0
def make_network(minibatch_size=128, debug=False):
    patch_size = 32
    inp = DataProvider("data",
                       shape=(minibatch_size, 3, patch_size, patch_size),
                       dtype=np.float32)
    label = DataProvider("label", shape=(minibatch_size, ), dtype=np.int32)

    lay = conv_bn(inp, 3, 1, 1, 16, True)

    lis = [16, 32, 64]
    for i in range(len(lis)):
        #lay = res_block(lay, lis[i], i, n)
        for j in range(10):
            lay = conv_bn(lay, 3, 1, 1, lis[i], True)
        if i < len(lis) - 1:
            lay = conv_bn(lay, 2, 2, 0, lis[i + 1], True)

    #global average pooling
    #feature = lay.mean(axis = 2).mean(axis = 2)
    #feature = Pooling2D("pooling", lay, window = 8, stride = 8, padding = 0, mode = "AVERAGE")
    lay = lay.reshape(lay.shape[0], lay.shape[1], lay.shape[2] * lay.shape[3])
    print(lay.partial_shape)
    a = O.ParamProvider(
        "a",
        np.random.randn(lay.partial_shape[2], 10) *
        (1 / lay.partial_shape[2])**0.5)
    a = a.dimshuffle('x', 0, 1)
    a = a.broadcast(
        (lay.partial_shape[0], a.partial_shape[1], a.partial_shape[2]))
    print(a.partial_shape)
    b = O.ParamProvider(
        "b",
        np.random.randn(lay.partial_shape[2], 10) *
        (1 / lay.partial_shape[2])**0.5)
    b = b.dimshuffle('x', 0, 1)
    b = b.broadcast(
        (lay.partial_shape[0], b.partial_shape[1], b.partial_shape[2]))
    print(b.partial_shape)
    fca = O.BatchedMatMul(lay, a)
    fcb = O.BatchedMatMul(lay, b)
    fc = O.BatchedMatMul(fca.dimshuffle(0, 2, 1), fcb) / 64
    outs = []
    for i in range(10):
        outs.append(fc[:, i, i].dimshuffle(0, 'x'))
    fc = O.Concat(outs, axis=1)
    pred = Softmax("pred", fc)
    """
	pred = Softmax("pred", FullyConnected(
		"fc0", feature, output_dim = 10,
		#W = G(mean = 0, std = (1 / 64)**0.5),
		#b = C(0),
		nonlinearity = Identity()
		))
	"""

    network = Network(outputs=[pred])
    #info = CInfo()
    #info.get_complexity(network.outputs).as_table().show()
    network.loss_var = CrossEntropyLoss(pred, label)
    """
	if debug:
		visitor = NetworkVisitor(network.loss_var)
		for i in visitor.all_oprs:
			print(i)
			print(i.partial_shape)
			print("input = ", i.inputs)
			print("output = ", i.outputs)
			print()
	"""

    return network
Example #20
0
def make_network():
    batch_size = config.minibatch_size
    img_size = config.img_size

    data = DataProvider("data", shape=(batch_size, 3, img_size, img_size))
    label = DataProvider("label", shape=(batch_size, 8))
    f = create_bn_relu("conv1", data, ksize=3, stride=2, pad=1, num_outputs=24)
    f = Pooling2D("pool1", f, window=3, stride=2, padding=1, mode="MAX")

    pre = [2, 3, 4]
    stages = [4, 8, 4]
    mid_outputs = [32, 64, 128]
    enable_stride = [True, True, True]
    for p, s, o, es in zip(pre, stages, mid_outputs, enable_stride):
        for i in range(s):
            prefix = "{}{}".format(p, chr(ord("a") + i))
            stride = 1 if not es or i > 0 else 2
            has_proj = False if i > 0 else True
            f = create_xception(prefix, f, stride, o, o * 4, has_proj)
            print("{}\t{}".format(prefix, f.partial_shape))

    f1 = Pooling2D("pool5_1", f, window=7, stride=7, padding=0, mode="AVERAGE")
    f1 = FullyConnected("fc3_1",
                        f1,
                        output_dim=2,
                        nonlinearity=mgsk.opr.helper.elemwise_trans.Identity())
    f1 = Softmax("cls_softmax_1", f1)

    f2 = Pooling2D("pool5_2", f, window=7, stride=7, padding=0, mode="AVERAGE")
    f2 = FullyConnected("fc3_2",
                        f2,
                        output_dim=2,
                        nonlinearity=mgsk.opr.helper.elemwise_trans.Identity())
    f2 = Softmax("cls_softmax_2", f2)

    f3 = Pooling2D("pool5_3", f, window=7, stride=7, padding=0, mode="AVERAGE")
    f3 = FullyConnected("fc3_3",
                        f3,
                        output_dim=2,
                        nonlinearity=mgsk.opr.helper.elemwise_trans.Identity())
    f3 = Softmax("cls_softmax_3", f3)

    f4 = Pooling2D("pool5_4", f, window=7, stride=7, padding=0, mode="AVERAGE")
    f4 = FullyConnected("fc3_4",
                        f4,
                        output_dim=2,
                        nonlinearity=mgsk.opr.helper.elemwise_trans.Identity())
    f4 = Softmax("cls_softmax_4", f4)

    f5 = Pooling2D("pool5_5", f, window=7, stride=7, padding=0, mode="AVERAGE")
    f5 = FullyConnected("fc3_5",
                        f5,
                        output_dim=2,
                        nonlinearity=mgsk.opr.helper.elemwise_trans.Identity())
    f5 = Softmax("cls_softmax_5", f5)

    f6 = Pooling2D("pool5_6", f, window=7, stride=7, padding=0, mode="AVERAGE")
    f6 = FullyConnected("fc3_6",
                        f6,
                        output_dim=2,
                        nonlinearity=mgsk.opr.helper.elemwise_trans.Identity())
    f6 = Softmax("cls_softmax_6", f6)

    f7 = Pooling2D("pool5_7", f, window=7, stride=7, padding=0, mode="AVERAGE")
    f7 = FullyConnected("fc3_7",
                        f7,
                        output_dim=2,
                        nonlinearity=mgsk.opr.helper.elemwise_trans.Identity())
    f7 = Softmax("cls_softmax_7", f7)

    f8 = Pooling2D("pool5_8", f, window=7, stride=7, padding=0, mode="AVERAGE")
    f8 = FullyConnected("fc3_8",
                        f8,
                        output_dim=2,
                        nonlinearity=mgsk.opr.helper.elemwise_trans.Identity())
    f8 = Softmax("cls_softmax_8", f8)
    losses = {}

    # cross-entropy loss
    # from IPython import embed
    # embed()
    label_1 = label[:, 0]
    label_2 = label[:, 1]
    label_3 = label[:, 2]
    label_4 = label[:, 3]
    label_5 = label[:, 4]
    label_6 = label[:, 5]
    label_7 = label[:, 6]
    label_8 = label[:, 7]

    loss_xent_0 = O.cross_entropy(f1, label_1, name='loss_pose')
    try:
        loss_xent_1 = O.cross_entropy_with_mask(f2, label_2, label_1)
        loss_xent_2 = O.cross_entropy_with_mask(f3, label_3, label_1)
        loss_xent_3 = O.cross_entropy_with_mask(f4, label_4, label_1)
        loss_xent_4 = O.cross_entropy_with_mask(f5, label_5, label_1)
        loss_xent_5 = O.cross_entropy_with_mask(f6, label_6, label_1)
        loss_xent_6 = O.cross_entropy_with_mask(f7, label_7, label_1)
        loss_xent_7 = O.cross_entropy_with_mask(f8, label_8, label_1)
    except Exception as err:
        print(err)
    loss_xent = loss_xent_0 + loss_xent_1 + loss_xent_2 + loss_xent_3 + loss_xent_4 + loss_xent_5 + loss_xent_6 + loss_xent_7

    losses['loss_xent'] = loss_xent

    # weight decay regularization loss

    loss_weight_decay = 0
    if config.weight_decay:
        weight_decay = config.weight_decay
        with GroupNode('weight_decay').context_reg():
            for opr in iter_dep_opr(loss_xent):
                if not isinstance(opr, ParamProvider) or opr.freezed:
                    continue
                param = opr
                name = param.name
                if not (name.endswith('W')):
                    continue
                # logger.info('L2 regularization on `{}`'.format(name))
                loss_weight_decay += 0.5 * weight_decay * (param**2).sum()
        losses['loss_weight_decay'] = loss_weight_decay

    # total loss
    with GroupNode('loss').context_reg():
        loss = sum(losses.values())
    losses['loss'] = loss

    # for multi-GPU task, tell the GPUs to summarize the final loss
    O.utils.hint_loss_subgraph([loss_xent, loss_weight_decay], loss)

    # --------3.23-----------
    net = RawNetworkBuilder(inputs=[data, label],
                            outputs=[f1, f2, f3, f4, f5, f6, f7, f8],
                            loss=loss)
    # net = RawNetworkBuilder(inputs=[data, label], outputs=f1, loss=loss)

    metrics1 = get_metrics(f1, label_1)
    # metrics2 = get_metrics(f2, label_2)
    # metrics3 = get_metrics(f3, label_3)
    # metrics4 = get_metrics(f4, label_4)
    # metrics5 = get_metrics(f5, label_5)

    net.extra['extra_outputs'] = {
        'pred_0': f1,
        'pred_1': f1,
        'pred_2': f2,
        'pred_3': f3,
        'pred_4': f4,
        'pred_5': f5,
        'pred_6': f6,
        'pred_7': f7,
        'label': label
    }
    # net.extra['extra_outputs'] = {'pred': f1, 'label': label}

    net.extra['extra_outputs'].update(metrics1)
    # net.extra['extra_outputs'].update(metrics2)
    # net.extra['extra_outputs'].update(metrics3)
    # net.extra['extra_outputs'].update(metrics4)
    # net.extra['extra_outputs'].update(metrics5)

    net.extra['extra_outputs'].update(losses)

    net.extra['extra_config'] = {
        'monitor_vars': list(losses.keys()) + list(metrics1.keys())
    }

    return net