Example #1
0
def bn_relu_conv(inp, ker_shape, stride, padding, out_chl, has_relu, has_bn, has_conv = True, group = None):
	global idx
	idx += 1
	if has_bn:
		l1 = BN("bn{}".format(idx), inp, eps = 1e-9)
		l1 = ElementwiseAffine("bnaff{}".format(idx), l1, shared_in_channels = False, k = C(1), b = C(0))
	else:
		l1 = inp
	
	if has_relu:
		l2 = arith.ReLU(l1)
	else:
		l2 = l1
	
	if not has_conv:
		return l2

	if group is None:
		l3 = Conv2D(
			"conv{}".format(idx), l2, kernel_shape = ker_shape, stride = stride, padding = padding,
			output_nr_channel = out_chl,
			nonlinearity = Identity()
			)
	else:
		l3 = Conv2D(
			"conv{}".format(idx), l2, kernel_shape = ker_shape, stride = stride, padding = padding,
			output_nr_channel = out_chl,
			nonlinearity = Identity(),
			group = group,
			)
	
	return l3
Example #2
0
def res_layer(inp, chl, stride = 1, proj = False):
	pre = inp
	inp = conv_bn(inp, 1, stride, 0, chl // 4, True)
	chl //= 4
	name = inp.name
	#Global Average Pooling
	SE = inp.mean(axis = 3).mean(axis = 2)
	sum_lay = 0
	out_lay = 0
	width = 4
	lay = FullyConnected(
		"fc0({})".format(name), SE, output_dim = chl,
		nonlinearity = ReLU()
		)
	#fc1
	lay = FullyConnected(
		"fc1({})".format(name), lay, output_dim = chl * width,
		nonlinearity = Identity()
		)
	lay = lay.reshape(inp.shape[0], chl, width)
	lay = Softmax("softmax({})".format(name), lay, axis = 2)
	for i in range(width):
		if i == 0:
			inp_lay = inp
		else:
			inp_lay = O.Concat([inp[:, width:, :, :], inp[:, :width, :, :]], axis = 1)
		inp_lay = inp_lay * lay[:, :, i].dimshuffle(0, 1, 'x', 'x')
	inp = inp_lay
	chl *= 4
	inp = conv_bn(inp, 3, 1, 1, chl // 4, True)
	inp = conv_bn(inp, 1, 1, 0, chl, False)
	if proj:
		pre = conv_bn(pre, 1, stride, 0, chl, False)
	name = inp.name
	#Global Average Pooling
	SE = inp.mean(axis = 3).mean(axis = 2)
	sum_lay = 0
	out_lay = 0
	width = 4
	lay = FullyConnected(
		"fc0({})".format(name), SE, output_dim = chl,
		nonlinearity = ReLU()
		)
	#fc1
	lay = FullyConnected(
		"fc1({})".format(name), lay, output_dim = chl * width,
		nonlinearity = Identity()
		)
	lay = lay.reshape(inp.shape[0], chl, width)
	lay = Softmax("softmax({})".format(name), lay, axis = 2)
	for i in range(width):
		if i == 0:
			inp_lay = inp
		else:
			inp_lay = O.Concat([inp[:, width:, :, :], inp[:, :width, :, :]], axis = 1)
		inp_lay = inp_lay * lay[:, :, i].dimshuffle(0, 1, 'x', 'x')
	inp = inp_lay
	inp = arith.ReLU(inp + pre)
	return inp
Example #3
0
def conv_bn(inp, ker_shape, stride, padding, out_chl, isrelu, group = 1, shift = 0):
	global idx
	idx += 1
	if group == 1:
		l1 = Conv2D(
			"conv{}".format(idx), inp, kernel_shape = ker_shape, stride = stride, padding = padding,
			output_nr_channel = out_chl,
			#W = G(mean = 0, std = ((1) / (ker_shape**2 * inp.partial_shape[1]))**0.5),
			#b = C(0),
			nonlinearity = Identity()
			)
	else:
		if shift == 0:
			l1 = Conv2D(
				"conv{}".format(idx), inp, kernel_shape = ker_shape, stride = stride, padding = padding,
				output_nr_channel = out_chl,
				#W = G(mean = 0, std = ((1) / (ker_shape**2 * inp.partial_shape[1]))**0.5),
				#b = C(0),
				nonlinearity = Identity(),
				group = group,
				)
		else:
			shift = 1
			l1 = inp
			while shift != group:
				l11 = Conv2D(
					"conv{}_{}_1".format(idx, shift), l1, kernel_shape = ker_shape, stride = stride, padding = padding,
					output_nr_channel = out_chl,
					#W = G(mean = 0, std = ((1) / (ker_shape**2 * inp.partial_shape[1]))**0.5),
					#b = C(0),
					nonlinearity = Identity(),
					group = group,
					)
				inp_chl = l1.partial_shape[1]
				l1 = O.Concat([l1[:, shift * inp_chl // group:, :, :], l1[:, :shift * inp_chl // group, :, :]], axis = 1)
				l12 = Conv2D(
					"conv{}_{}_2".format(idx, shift), l1, kernel_shape = ker_shape, stride = stride, padding = padding,
					output_nr_channel = out_chl,
					#W = G(mean = 0, std = ((1) / (ker_shape**2 * inp.partial_shape[1]))**0.5),
					#b = C(0),
					nonlinearity = Identity(),
					group = group,
					)
				l1 = l11 + l12
				shift *= 2
	l2 = BN("bn{}".format(idx), l1, eps = 1e-9)
	l2 = ElementwiseAffine("bnaff{}".format(idx), l2, shared_in_channels = False, k = C(1), b = C(0))
	if isrelu:
		l2 = arith.ReLU(l2)
	return l2
Example #4
0
def make_network(minibatch_size=128):
    patch_size = 32
    inp = DataProvider("data",
                       shape=(minibatch_size, 15, patch_size, patch_size))
    label = DataProvider("label", shape=(minibatch_size, ))

    #lay = bn_relu_conv(inp, 3, 1, 1, 16, False, False)
    lay, conv = conv_bn(inp, 3, 1, 1, 16, True)
    out = [conv]
    for chl in [32, 64, 128]:
        for i in range(10):
            lay, conv = conv_bn(lay, 3, 1, 1, chl, True)
            out.append(conv)
        if chl != 128:
            lay = b_resize("pooling{}".format(chl), lay)
            lay = Pooling2D("pooling{}".format(chl), lay, window=2, mode="MAX")

    #global average pooling
    print(lay.partial_shape)
    feature = lay.mean(axis=2).mean(axis=2)
    #feature = Pooling2D("glbpoling", lay, window = 8, stride = 8, mode = "AVERAGE")
    pred = Softmax(
        "pred",
        FullyConnected("fc0",
                       feature,
                       output_dim=10,
                       W=G(mean=0, std=(1 / feature.partial_shape[1])**0.5),
                       b=C(0),
                       nonlinearity=Identity()))

    network = Network(outputs=[pred] + out)
    network.loss_var = CrossEntropyLoss(pred, label)
    return network
Example #5
0
def bn_relu_conv(inp, ker_shape, stride, padding, out_chl, has_relu, has_bn, has_conv = True):
	global idx
	idx += 1
	if has_bn:
		l1 = BN("bn{}".format(idx), inp, eps = 1e-9)
		l1 = ElementwiseAffine("bnaff{}".format(idx), l1, shared_in_channels = False, k = C(1), b = C(0))
	else:
		l1 = inp
	
	if has_relu:
		l2 = arith.ReLU(l1)
	else:
		l2 = l1
	
	if not has_conv:
		return l2

	l3 = Conv2D(
		"conv{}".format(idx), l2, kernel_shape = ker_shape, stride = stride, padding = padding,
		output_nr_channel = out_chl,
		#W = G(mean = 0, std = (1 / (ker_shape**2 * inp.partial_shape[1]))**0.5),
		#b = C(0),
		nonlinearity = Identity()
		)
	
	return l3
Example #6
0
def relu_conv_bn(inp,
                 ker_shape,
                 stride,
                 padding,
                 out_chl,
                 isrelu=True,
                 isbn=True):
    global idx
    idx += 1
    if isrelu:
        inp = arith.ReLU(inp)
    inp = Conv2D("conv{}".format(idx),
                 inp,
                 kernel_shape=ker_shape,
                 stride=stride,
                 padding=padding,
                 output_nr_channel=out_chl,
                 nonlinearity=Identity())
    if isbn:
        inp = BN("bn{}".format(idx), inp, eps=1e-9)
        inp = ElementwiseAffine("bnaff{}".format(idx),
                                inp,
                                shared_in_channels=False,
                                k=C(1),
                                b=C(0))
    return inp
Example #7
0
def make_network(minibatch_size=128):
    patch_size = 32
    inp = DataProvider("data",
                       shape=(minibatch_size, 3, patch_size, patch_size))
    label = DataProvider("label", shape=(minibatch_size, ))

    lay = conv_bn(inp, 3, 1, 1, 16, True)

    n = 3
    lis = [16, 32, 64]
    for i in lis:
        lay = res_block(lay, i, n)

    #global average pooling
    feature = lay.mean(axis=2).mean(axis=2)
    pred = Softmax(
        "pred",
        FullyConnected("fc0",
                       feature,
                       output_dim=10,
                       W=G(mean=0, std=(2 / 64)**0.5),
                       b=C(0),
                       nonlinearity=Identity()))

    network = Network(outputs=[pred])
    network.loss_var = CrossEntropyLoss(pred, label)
    return network
Example #8
0
def make_network(minibatch_size = 128, debug = False):
	patch_size = 32
	inp = DataProvider("data", shape = (minibatch_size, 3, patch_size, patch_size), dtype = np.float32)
	label = DataProvider("label", shape = (minibatch_size, ), dtype = np.int32)

	lay = conv_bn(inp, 3, 1, 1, 16, True)

	n = 18
	lis = [16, 32, 64]
	for i in lis:
		lay = res_block(lay, i, n)
	
	#global average pooling
	#feature = lay.mean(axis = 2).mean(axis = 2)
	feature = Pooling2D("pooling", lay, window = 8, stride = 8, padding = 0, mode = "AVERAGE")
	pred = Softmax("pred", FullyConnected(
		"fc0", feature, output_dim = 10,
		nonlinearity = Identity()
		))
	
	network = Network(outputs = [pred])
	network.loss_var = CrossEntropyLoss(pred, label)
	
	if debug:
		visitor = NetworkVisitor(network.loss_var)
		for i in visitor.all_oprs:
			print(i)
			print(i.partial_shape)
			print("input = ", i.inputs)
			print("output = ", i.outputs)
			print()

	return network
Example #9
0
def dense_block(inp, k, l):
    lay = inp
    for i in range(l):
        cur_lay = bn_relu_conv(lay, 3, 1, 1, k, True, True)
        name = cur_lay.name
        group = k // 4
        #G.P.
        SE = cur_lay.mean(axis=3).mean(axis=2)
        SE = FullyConnected("fc0({})".format(name),
                            SE,
                            output_dim=(k // group)**2 * group,
                            nonlinearity=ReLU())
        SE = FullyConnected("fc1({})".format(name),
                            SE,
                            output_dim=(k // group)**2 * group,
                            nonlinearity=Sigmoid())
        print(SE.name)
        SE = SE.reshape(cur_lay.shape[0] * group, k // group, k // group, 1, 1)
        preshape = cur_lay.shape
        cur_lay = cur_lay.reshape(1, cur_lay.shape[0] * cur_lay.shape[1],
                                  cur_lay.shape[2], cur_lay.shape[3])
        cur_lay = Conv2D("conv({})".format(name),
                         cur_lay,
                         kernel_shape=1,
                         stride=1,
                         padding=0,
                         W=SE,
                         nonlinearity=Identity())
        cur_lay = cur_lay.reshape(preshape)
        #cur_lay = cur_lay * SE.dimshuffle(0, 1, 'x', 'x')
        lay = Concat([lay, cur_lay], axis=1)
    return lay
Example #10
0
def conv_bn(inp, ker_shape, stride, padding, out_chl, isrelu, mode = None):
	global idx
	idx += 1
	print(inp.partial_shape, ker_shape, out_chl)
	if ker_shape == 1:
		W = ortho_group.rvs(out_chl)
		W = W[:, :inp.partial_shape[1]]
		W = W.reshape(W.shape[0], W.shape[1], 1, 1)
		W = ConstProvider(W)
		b = ConstProvider(np.zeros(out_chl))
	else:
		W = G(mean = 0, std = ((1 + int(isrelu)) / (ker_shape**2 * inp.partial_shape[1]))**0.5)
		b = C(0)
	l1 = Conv2D(
		"conv{}".format(idx), inp, kernel_shape = ker_shape, stride = stride, padding = padding,
		output_nr_channel = out_chl,
		group = mode,
		W = W,
		b = b,
		nonlinearity = Identity()
		)
	l2 = BN("bn{}".format(idx), l1, eps = 1e-9)
	l2 = ElementwiseAffine("bnaff{}".format(idx), l2, shared_in_channels = False, k = C(1), b = C(0))
	if isrelu:
		l2 = arith.ReLU(l2)
	return l2, l1
Example #11
0
def make_network(minibatch_size = 128):
	patch_size = 32
	inp = DataProvider("data", shape = (minibatch_size, 3, patch_size, patch_size))
	label = DataProvider("label", shape = (minibatch_size, ))

	#lay = bn_relu_conv(inp, 3, 1, 1, 16, False, False)
	lay, conv = conv_bn(inp, 3, 1, 1, 16, True)
	out = [conv]
	for chl in [32 * 3, 64 * 3, 128 * 3]:
		for i in range(10):
			lay, conv1, conv2 = xcep_layer(lay, chl)
			out.append(conv1)
			out.append(conv2)
		if chl != 128 * 3:
			lay = Pooling2D("pooling{}".format(chl), lay, window = 2, mode = "MAX")

	
	#global average pooling
	print(lay.partial_shape)
	feature = lay.mean(axis = 2).mean(axis = 2)
	#feature = Pooling2D("glbpoling", lay, window = 8, stride = 8, mode = "AVERAGE")
	W = ortho_group.rvs(feature.partial_shape[1])
	W = W[:, :10]
	W = ConstProvider(W)
	b = ConstProvider(np.zeros((10, )))
	pred = Softmax("pred", FullyConnected(
		"fc0", feature, output_dim = 10,
		W = W,
		b = b,
		nonlinearity = Identity()
		))
	
	network = Network(outputs = [pred] + out)
	network.loss_var = CrossEntropyLoss(pred, label)
	return network
Example #12
0
def make_network(minibatch_size=64):
    patch_size = 32
    inp = DataProvider("data",
                       shape=(minibatch_size, 3, patch_size, patch_size))
    label = DataProvider("label", shape=(minibatch_size, ))

    k, l = 20, (40 - 4) // 3
    lay = bn_relu_conv(inp, 3, 1, 1, k, False, False)

    for i in range(3):
        lay = transition(dense_block(lay, k, l), i)

    #global average pooling
    print(lay.partial_shape)
    feature = lay.mean(axis=2).mean(axis=2)
    #feature = Pooling2D("glbpoling", lay, window = 8, stride = 8, mode = "AVERAGE")
    pred = Softmax(
        "pred",
        FullyConnected("fc0", feature, output_dim=10, nonlinearity=Identity()))

    network = Network(outputs=[pred])
    network.loss_var = CrossEntropyLoss(pred, label)

    info = CInfo()
    info.get_complexity(network.outputs).as_table().show()

    return network
Example #13
0
def make_network(minibatch_size=64):
    patch_size = 32
    inp = DataProvider("data",
                       shape=(minibatch_size, 3, patch_size, patch_size))
    label = DataProvider("label", shape=(minibatch_size, ))

    lay = bn_relu_conv(inp, 3, 1, 1, 16, False, False)

    k, l = 24, (100 - 4) // 3
    for i in range(3):
        lay = transition(dense_block(lay, k, l, False), i)

    feature = lay
    pred = Softmax(
        "pred",
        FullyConnected("fc0",
                       feature,
                       output_dim=10,
                       W=G(mean=0, std=(1 / feature.partial_shape[1])**0.5),
                       b=C(0),
                       nonlinearity=Identity()))

    network = Network(outputs=[pred])
    network.loss_var = CrossEntropyLoss(pred, label)
    return network
Example #14
0
def make_network(minibatch_size=64):
    patch_size = 32
    inp = DataProvider("data",
                       shape=(minibatch_size, 3, patch_size, patch_size))
    label = DataProvider("label", shape=(minibatch_size, ))

    lay = bn_relu_conv(inp, 3, 1, 1, 16, False, False)

    k, l = 12, (40 - 4) // 3
    for i in range(3):
        lay = transition(dense_block(lay, k, l), i)

    #global average pooling
    print(lay.partial_shape)
    feature = lay.mean(axis=2).mean(axis=2)
    #feature = Pooling2D("glbpoling", lay, window = 8, stride = 8, mode = "AVERAGE")
    pred = Softmax(
        "pred",
        FullyConnected("fc0",
                       feature,
                       output_dim=10,
                       W=G(mean=0, std=(1 / feature.partial_shape[1])**0.5),
                       b=C(0),
                       nonlinearity=Identity()))

    network = Network(outputs=[pred])
    network.loss_var = CrossEntropyLoss(pred, label)
    return network
Example #15
0
def make_network(minibatch_size=128, debug=False):
    patch_size = 32
    inp = DataProvider("data",
                       shape=(minibatch_size, 3, patch_size, patch_size),
                       dtype=np.float32)
    label = DataProvider("label", shape=(minibatch_size, ), dtype=np.int32)

    lay, w = conv_bn(inp, 3, 1, 1, 16, True)
    lis_w = [w]

    n = 3
    lis = [16, 32, 64]
    for i in lis:
        lay, lis_new = res_block(lay, i, n)
        lis_w += lis_new

    #global average pooling
    #feature = lay.mean(axis = 2).mean(axis = 2)
    feature = Pooling2D("pooling",
                        lay,
                        window=8,
                        stride=8,
                        padding=0,
                        mode="AVERAGE")
    pred = Softmax(
        "pred",
        FullyConnected(
            "fc0",
            feature,
            output_dim=10,
            #W = G(mean = 0, std = (1 / 64)**0.5),
            #b = C(0),
            nonlinearity=Identity()))

    network = Network(outputs=[pred])
    network.loss_var = CrossEntropyLoss(pred, label)

    lmd = 1
    for w in lis_w:
        w = w.reshape(w.partial_shape[0], -1).dimshuffle(1, 0)
        w = w / ((w**2).sum(axis=0)).dimshuffle('x', 0)
        A = O.MatMul(w.dimshuffle(1, 0), w)
        network.loss_var += lmd * (
            (A - np.identity(A.partial_shape[0]))**2).mean()

    if debug:
        visitor = NetworkVisitor(network.loss_var)
        for i in visitor.all_oprs:
            print(i)
            print(i.partial_shape)
            print("input = ", i.inputs)
            print("output = ", i.outputs)
            print()

    return network
Example #16
0
def conv_bn(inp, ker_shape, stride, padding, out_chl, isrelu):
	global idx
	idx += 1
	l1 = Conv2D(
		"conv{}".format(idx), inp, kernel_shape = ker_shape, stride = stride, padding = padding,
		output_nr_channel = out_chl,
		nonlinearity = Identity()
		)
	l2 = BN("bn{}".format(idx), l1, eps = 1e-9)
	l2 = ElementwiseAffine("bnaff{}".format(idx), l2, shared_in_channels = False, k = C(1), b = C(0))
	if isrelu:
		l2 = arith.ReLU(l2)
	return l2
Example #17
0
def make_network(minibatch_size=128, debug=False):
    patch_size = 32
    inp = DataProvider("data",
                       shape=(minibatch_size, 3, patch_size, patch_size),
                       dtype=np.float32)
    label = DataProvider("label", shape=(minibatch_size, ), dtype=np.int32)

    lay = conv_bn(inp, 3, 1, 1, 16 * 4 * 2, True)

    n = 4 * 3
    group = 8
    lis = [16 * 4, 32 * 4, 64 * 4]
    for i in range(len(lis)):
        lay = res_block(lay, lis[i], i, n, group)

    #global average pooling
    #feature = lay.mean(axis = 2).mean(axis = 2)
    feature = Pooling2D("pooling",
                        lay,
                        window=8,
                        stride=8,
                        padding=0,
                        mode="AVERAGE")
    pred = Softmax(
        "pred",
        FullyConnected(
            "fc0",
            feature,
            output_dim=10,
            #W = G(mean = 0, std = (1 / 64)**0.5),
            #b = C(0),
            nonlinearity=Identity()))

    network = Network(outputs=[pred])
    network.loss_var = CrossEntropyLoss(pred, label)

    info = CInfo()
    info.get_complexity(network.outputs).as_table().show()
    """
	if debug:
		visitor = NetworkVisitor(network.loss_var)
		for i in visitor.all_oprs:
			print(i)
			print(i.partial_shape)
			print("input = ", i.inputs)
			print("output = ", i.outputs)
			print()
	"""

    return network
Example #18
0
def conv_bn(inp, ker_shape, stride, padding, out_chl, isrelu):
	global idx
	idx += 1
	l1 = Conv2D(
		"encoder_conv{}".format(idx), inp, kernel_shape = ker_shape, stride = stride, padding = padding,
		output_nr_channel = out_chl,
		W = G(mean = 0, std = ((1 + int(isrelu)) / (ker_shape**2 * inp.partial_shape[1]))**0.5),
		nonlinearity = Identity()
		)
	l2 = BN("encoder_bn{}".format(idx), l1, eps = 1e-9)
	l2 = ElementwiseAffine("bnaff{}".format(idx), l2, shared_in_channels = False, k = C(1), b = C(0))
	if isrelu:
		l2 = arith.ReLU(l2)
	return l2, l1
Example #19
0
def conv_bn(inp, ker_shape, stride, padding, out_chl, isrelu):
    global idx
    idx += 1
    l10 = Conv2D("conv{}_0".format(idx),
                 inp,
                 kernel_shape=ker_shape,
                 stride=stride,
                 padding=padding,
                 output_nr_channel=out_chl // 2,
                 W=G(mean=0,
                     std=((1 + int(isrelu)) /
                          (ker_shape**2 * inp.partial_shape[1]))**0.5),
                 nonlinearity=Identity())
    l11 = Conv2D("conv{}_1".format(idx),
                 inp,
                 kernel_shape=ker_shape,
                 stride=stride,
                 padding=padding,
                 output_nr_channel=out_chl // 2,
                 W=G(mean=0,
                     std=((1 + int(isrelu)) /
                          (ker_shape**2 * inp.partial_shape[1]))**0.5),
                 nonlinearity=Identity())
    W = l11.inputs[1].owner_opr
    b = l11.inputs[2].owner_opr
    W.set_freezed()
    b.set_freezed()
    l1 = Concat([l10, l11], axis=1)
    l2 = BN("bn{}".format(idx), l1, eps=1e-9)
    l2 = ElementwiseAffine("bnaff{}".format(idx),
                           l2,
                           shared_in_channels=False,
                           k=C(1),
                           b=C(0))
    if isrelu:
        l2 = arith.ReLU(l2)
    return l2, l1
Example #20
0
def bn_relu_conv(inp, ker_shape, stride, padding, out_chl, isrelu, isbn):
	global idx
	idx += 1
	if isbn:
		inp = BN("bn{}".format(idx), inp, eps = 1e-9)
		inp = ElementwiseAffine("bnaff{}".format(idx), inp, shared_in_channels = False, k = C(1), b = C(0))
	if isrelu:
		inp = arith.ReLU(inp)
	inp = Conv2D(
		"conv{}".format(idx), inp, kernel_shape = ker_shape, stride = stride, padding = padding,
		output_nr_channel = out_chl,
		#W = G(mean = 0, std = ((1) / (ker_shape**2 * inp.partial_shape[1]))**0.5),
		#b = C(0),
		nonlinearity = Identity()
		)
	return inp
Example #21
0
def make_network(minibatch_size=128):
    patch_size = 32
    inp = DataProvider("data",
                       shape=(minibatch_size, 3, patch_size, patch_size))
    label = DataProvider("label", shape=(minibatch_size, ))

    #lay = bn_relu_conv(inp, 3, 1, 1, 16, False, False)
    lay, conv = conv_bn(inp, 3, 1, 1, 16, True)
    out = [conv]
    for chl in [32, 64, 128]:
        for i in range(10):
            lay, conv = conv_bn(lay, 3, 1, 1, chl, True)
            out.append(conv)
        if chl != 128:
            lay = Pooling2D("pooling{}".format(chl), lay, window=2, mode="MAX")

    #global average pooling
    print(lay.partial_shape)
    feature = lay.mean(axis=2).mean(axis=2)
    #feature = Pooling2D("glbpoling", lay, window = 8, stride = 8, mode = "AVERAGE")
    pred = Softmax(
        "pred",
        FullyConnected("fc0",
                       feature,
                       output_dim=10,
                       W=G(mean=0, std=(1 / feature.partial_shape[1])**0.5),
                       b=C(0),
                       nonlinearity=Identity()))

    network = Network(outputs=[pred] + out)
    network.loss_var = CrossEntropyLoss(pred, label)
    #conv1 = out[0]
    #print(conv1.inputs[1].partial_shape)
    lmd = 0.01
    for conv_lay in out:
        w = conv_lay
        #w = w.reshape(w.partial_shape[0], -1).dimshuffle(1, 0)
        w = w.dimshuffle(1, 0, 2, 3)
        w = w.reshape(w.partial_shape[0], -1).dimshuffle(1, 0)
        w = w / ((w**2).sum(axis=0)).dimshuffle('x', 0)
        A = MatMul(w.dimshuffle(1, 0), w)
        #print(A.partial_shape)
        network.loss_var += lmd * (
            (A - np.identity(A.partial_shape[0]))**2).sum()

    return network
Example #22
0
def make_network(minibatch_size=128, debug=False):
    patch_size = 32
    inp = DataProvider("data",
                       shape=(minibatch_size, 3, patch_size, patch_size),
                       dtype=np.float32)
    label = DataProvider("label", shape=(minibatch_size, ), dtype=np.int32)

    lay = conv_bn(inp, 3, 1, 1, 16, True)

    lis = [16, 32, 64]
    for i in range(len(lis)):
        #lay = res_block(lay, lis[i], i, n)
        for j in range(40):
            lay = conv_bn(lay, 3, 1, 1, lis[i], False)
        if i < len(lis) - 1:
            lay = conv_bn(lay, 2, 2, 0, lis[i + 1], True)

    #global average pooling
    feature = lay.mean(axis=2).mean(axis=2)
    pred = Softmax(
        "pred",
        FullyConnected(
            "fc0",
            feature,
            output_dim=10,
            #W = G(mean = 0, std = (1 / 64)**0.5),
            #b = C(0),
            nonlinearity=Identity()))

    network = Network(outputs=[pred])
    #info = CInfo()
    #info.get_complexity(network.outputs).as_table().show()
    network.loss_var = CrossEntropyLoss(pred, label)
    """
	if debug:
		visitor = NetworkVisitor(network.loss_var)
		for i in visitor.all_oprs:
			print(i)
			print(i.partial_shape)
			print("input = ", i.inputs)
			print("output = ", i.outputs)
			print()
	"""

    return network
Example #23
0
def conv_norm(inp, ker_shape, stride, padding, out_chl, isrelu):
    global idx
    idx += 1
    inp = Conv2D("conv{}".format(idx),
                 inp,
                 kernel_shape=ker_shape,
                 stride=stride,
                 padding=padding,
                 output_nr_channel=out_chl,
                 nonlinearity=Identity())
    mean = inp.mean(axis=3).mean(axis=2)
    std = ((inp -
            mean.dimshuffle(0, 1, 'x', 'x'))**2).mean(axis=3).mean(axis=2)**0.5
    inp = (inp - mean.dimshuffle(0, 1, 'x', 'x')) / std.dimshuffle(
        0, 1, 'x', 'x')
    if isrelu:
        inp = O.ReLU(inp)
    return inp
Example #24
0
def make_network(minibatch_size=128):
    patch_size = 32
    inp = DataProvider("data",
                       shape=(minibatch_size, 3, patch_size, patch_size))
    label = DataProvider("label", shape=(minibatch_size, ))
    idxmap = np.zeros((128, 3, 32, 32, 4), dtype=np.int32)
    sample = IndexingRemap(inp, idxmap)
    network = Network(outputs=[sample])
    sample = FullyConnected("fc", sample, output_dim=1)
    network.loss_var = sample.sum()
    return network

    #lay = bn_relu_conv(inp, 3, 1, 1, 16, False, False)
    lay, conv = conv_bn(inp, 3, 1, 1, 32, True)
    out = [conv]
    """
	for chl in [32, 64, 128]:
		for i in range(10):
			lay, conv = conv_bn(lay, 3, 1, 1, chl, True)
			out.append(conv)
		if chl != 128:
			lay = dfpooling("pooling{}".format(chl), lay)
	"""
    chl = 32
    for i in range(3):
        lay, conv = dfconv(lay, chl, True, i == 0)

    #global average pooling
    print(lay.partial_shape)
    feature = lay.mean(axis=2).mean(axis=2)
    #feature = Pooling2D("glbpoling", lay, window = 8, stride = 8, mode = "AVERAGE")
    pred = Softmax(
        "pred",
        FullyConnected("fc0",
                       feature,
                       output_dim=10,
                       W=G(mean=0, std=(1 / feature.partial_shape[1])**0.5),
                       b=C(0),
                       nonlinearity=Identity()))

    network = Network(outputs=[pred] + out)
    network.loss_var = CrossEntropyLoss(pred, label)
    return network
Example #25
0
def conv_wn(inp, ker_shape, stride, padding, out_chl, isrelu):
	global idx
	idx += 1
	l1 = Conv2D(
		"conv{}".format(idx), inp, kernel_shape = ker_shape, stride = stride, padding = padding,
		output_nr_channel = out_chl,
		W = G(mean = 0, std = 0.05),
		nonlinearity = Identity()
		)
	W = l1.inputs[1]
	#l2 = BN("bn{}".format(idx), l1, eps = 1e-9)
	w = l1.inputs[1]
	assert ":W" in w.name
	w = (w**2).sum(axis = 3).sum(axis = 2).sum(axis = 1)**0.5
	l1 = l1 / w.dimshuffle('x', 0, 'x', 'x')
	l2 = ElementwiseAffine("bnaff{}".format(idx), l1, shared_in_channels = False, k = C(1), b = C(0))
	if isrelu:
		l2 = arith.ReLU(l2)
	return l2, l1, W
Example #26
0
def make_network(minibatch_size=64):
    patch_size = 32
    inp = DataProvider("data",
                       shape=(minibatch_size, 3, patch_size, patch_size))
    label = DataProvider("label", shape=(minibatch_size, ))

    lay, w = bn_relu_conv(inp, 3, 1, 1, 16, False, False)
    lis_w = [w]

    k, l = 12, (40 - 4) // 3
    for i in range(3):
        #lay = transition(dense_block(lay, k, l), i)
        lay, lis_new = dense_block(lay, k, l)
        lis_w += lis_new
        lay, lis_new = transition(lay, i)
        lis_w += lis_new

    #global average pooling
    print(lay.partial_shape)
    feature = lay.mean(axis=2).mean(axis=2)
    #feature = Pooling2D("glbpoling", lay, window = 8, stride = 8, mode = "AVERAGE")
    pred = Softmax(
        "pred",
        FullyConnected("fc0", feature, output_dim=10, nonlinearity=Identity()))

    network = Network(outputs=[pred])
    network.loss_var = CrossEntropyLoss(pred, label)

    lmd = 0.01
    for w in lis_w:
        if w is None:
            continue
        print(w.partial_shape)
        w = w.reshape(w.partial_shape[0], -1).dimshuffle(1, 0)
        w = w / ((w**2).sum(axis=0)).dimshuffle('x', 0)
        A = O.MatMul(w.dimshuffle(1, 0), w)
        network.loss_var += lmd * (
            (A - np.identity(A.partial_shape[0]))**2).sum()

    return network
Example #27
0
def res_layer(inp, chl):
    pre = inp
    inp = conv_bn(inp, 3, 1, 1, chl, True)
    inp = conv_bn(inp, 3, 1, 1, chl, False)
    name = inp.name
    #Global Average Pooling
    SE = inp.mean(axis=3).mean(axis=2)
    group = 1
    #fc0
    SE = FullyConnected("fc0({})".format(name),
                        SE,
                        output_dim=chl,
                        nonlinearity=ReLU())
    #fc1
    SE = FullyConnected("fc1({})".format(name),
                        SE,
                        output_dim=(chl // group)**2 * group,
                        nonlinearity=Sigmoid())
    SE = SE.reshape(inp.shape[0] * group, chl // group, chl // group, 1, 1)
    w = SE
    SE /= SE.sum(axis=4).sum(axis=3).sum(axis=2).dimshuffle(
        0, 1, "x", "x", "x")
    #inp = inp * SE.dimshuffle(0, 1, 'x', 'x')
    inp = inp.reshape(1, inp.shape[0] * inp.shape[1], inp.shape[2],
                      inp.shape[3])
    inp = Conv2D(
        "conv({})".format(name),
        inp,
        kernel_shape=1,
        stride=1,
        padding=0,
        #output_nr_channel = chl,
        W=SE,
        nonlinearity=Identity(),
        #group = group
    )
    inp = inp.reshape(pre.shape)
    inp = arith.ReLU(inp + pre)
    return inp, w
Example #28
0
def dfconv(inp, chl, isrelu, ker_shape = 3, stride = 1, padding = 1, dx = [-1, 0, 1], dy = [-1, 0, 1]):
	inp = Conv2D(
		name + "conv", inp, kernel_shape = 3, stride = 1, padding = 1,
		output_nr_channel = ker_shape**2,
		W = G(mean = 0, std = ((1) / (ker_shape**2 * inp.partial_shape[1]))**0.5),
		nonlinearity = Identity()
		)
	inp = BN(name + "BN", inp, eps = 1e-9)

	global idx
	#idx += 1
	gamma = 0.001
	offsetx = inp.partial_shape[2] * Conv2D(
		"conv{}_offsetx".format(idx + 1), inp, kernel_shape = ker_shape, stride = stride, 
		padding = padding,
		output_nr_channel = ker_shape**2,
		W = G(mean = 0, std = gamma / (ker_shape**2 * inp.partial_shape[2])),
		nonlinearity = Identity()
		)
	offsety = inp.partial_shape[3] * Conv2D(
		"conv{}_offsety".format(idx + 1), inp, kernel_shape = ker_shape, stride = stride, 
		padding = padding,
		output_nr_channel = ker_shape**2,
		W = G(mean = 0, std = gamma / (ker_shape**2 * inp.partial_shape[3])),
		nonlinearity = Identity()
		)

	outputs = []
	for sx in range(2):
		for sy in range(2):
			if sx == 0:
				ofx = Floor(offsetx)
				bilx = offsetx - ofx
			else:
				ofx = Ceil(offsetx)
				bilx = ofx - offsetx
			if sy == 0:
				ofy = Floor(offsety)
				bily = offsety - ofy
			else:
				ofy = Ceil(offsety)
				bily = ofy - offsety

			"""
			No padding
			padding1 = ConstProvider(np.zeros((inp.partial_shape[0], inp.partial_shape[1], 1, inp.partial_shape[3])))
			padding2 = ConstProvider(np.zeros((inp.partial_shape[0], inp.partial_shape[1], inp.partial_shape[2] + 2, 1)))
			arg_fea = Concat([padding1, inp, padding1], axis = 2)
			arg_fea = Concat([padding2, arg_fea, padding2], axis = 3)
			"""
			arg_fea = inp

			#one_mat = ConstProvider(np.ones((inp.partial_shape[2], inp.partial_shape[3])), dtype = np.int32)
			one_mat = ConstProvider(1, dtype = np.int32).add_axis(0).broadcast((ofx.partial_shape[2], ofx.partial_shape[3]))
			affx = (Cumsum(one_mat, axis = 0) - 1) * stride
			affy = (Cumsum(one_mat, axis = 1) - 1) * stride

			ofx = ofx + affx.dimshuffle('x', 'x', 0, 1)
			ofy = ofy + affy.dimshuffle('x', 'x', 0, 1)
			one_mat = ConstProvider(np.ones((ker_shape, ofx.partial_shape[2], ofx.partial_shape[3])))
			#ofx[:, :ker_shape, :, :] -= 1
			#ofx[:, ker_shape*2:, :, :] += 1
			ofx += Concat([one_mat * i for i in dx], axis = 0).dimshuffle('x', 0, 1, 2)
			#ofy[:, ::3, :, :] -= 1
			#ofy[:, 2::3, :, :] += 1
			one_mat = ones((1, ofx.partial_shape[2], ofx.partial_shape[3]))
			one_mat = Concat([one_mat * i for i in dy], axis = 0)
			one_mat = Concat([one_mat] * ker_shape, axis = 0)
			ofy += one_mat.dimshuffle('x', 0, 1, 2)
			ofx = Max(Min(ofx, arg_fea.partial_shape[2] - 1), 0)
			ofy = Max(Min(ofy, arg_fea.partial_shape[3] - 1), 0)

			def DeformReshape(inp, ker_shape):
				inp = inp.reshape(inp.shape[0], ker_shape, ker_shape, inp.shape[2], inp.shape[3])
				inp = inp.dimshuffle(0, 3, 1, 4, 2)
				inp = inp.reshape(inp.shape[0], inp.shape[1] * inp.shape[2], inp.shape[3] * inp.shape[4])
				return inp

			ofx = DeformReshape(ofx, ker_shape)
			ofy = DeformReshape(ofy, ker_shape)
			bilx = DeformReshape(bilx, ker_shape)
			bily = DeformReshape(bily, ker_shape)

			of = ofx * arg_fea.shape[2] + ofy
			arg_fea = arg_fea.reshape(arg_fea.shape[0], arg_fea.shape[1], -1)
			of = of.reshape(ofx.shape[0], -1)
			of = of.dimshuffle(0, 'x', 1)
			#of = Concat([of] * arg_fea.partial_shape[1], axis = 1)
			of = of.broadcast((of.shape[0], arg_fea.shape[1], of.shape[2]))
			arx = Linspace(0, arg_fea.shape[0], arg_fea.shape[0], endpoint = False)
			arx = arx.add_axis(1).add_axis(2).broadcast(of.shape)
			ary = Linspace(0, arg_fea.shape[1], arg_fea.shape[1], endpoint = False)
			ary = ary.add_axis(0).add_axis(2).broadcast(of.shape)
			of = of.add_axis(3)
			arx = arx.add_axis(3)
			ary = ary.add_axis(3)
			idxmap = Astype(Concat([arx, ary, of], axis = 3), np.int32)
			"""
			sample = []
			for i in range(arg_fea.partial_shape[0]):
				for j in range(arg_fea.partial_shape[1]):
					sample.append(arg_fea[i][j].ai[of[i][j]].dimshuffle('x', 0))
			sample = Concat(sample, axis = 0)
			"""
			sample = IndexingRemap(arg_fea, idxmap).reshape(inp.shape[0], inp.shape[1], bilx.shape[1], -1)
			bilx = bilx.dimshuffle(0, 'x', 1, 2).broadcast(sample.shape)
			bily = bily.dimshuffle(0, 'x', 1, 2).broadcast(sample.shape)
			sample *= bilx * bily
			
			outputs.append(sample)
	
	output = outputs[0]
	for i in outputs[1:]:
		output += i
	
	return conv_bn(output, ker_shape, 3, 0, chl, isrelu)
Example #29
0
def dfpooling(name, inp, window = 2, padding = 0, dx = [0, 1], dy = [0, 1]):
	#inp = ConstProvider([[[[1, 2], [3, 4]]]], dtype = np.float32)
	"""
	Add a new conv&bn to insure that the scale of the feature map is variance 1.
	"""
	ker_shape = window
	stride = window	
	offsetlay = Conv2D(
		name + "conv", inp, kernel_shape = 3, stride = 1, padding = 1,
		output_nr_channel = ker_shape**2,
		W = G(mean = 0, std = ((1) / (3**2 * inp.partial_shape[1]))**0.5),
		nonlinearity = Identity()
		)
	#offsetlay = BN(name + "BN", offsetlay, eps = 1e-9)

	offsetx = Conv2D(
		name + "conv1x", offsetlay, kernel_shape = ker_shape, stride = stride, 
		padding = padding,
		output_nr_channel = ker_shape**2,
		W = G(mean = 0, std = (1 / (ker_shape**2 * inp.partial_shape[2]))**0.5),
		nonlinearity = Identity()
		)
	offsety = Conv2D(
		name + "conv1y", offsetlay, kernel_shape = ker_shape, stride = stride, 
		padding = padding,
		output_nr_channel = ker_shape**2,
		W = G(mean = 0, std = (1 / (ker_shape**2 * inp.partial_shape[3]))**0.5),
		nonlinearity = Identity()
		)
	offset = Concat([offsetx, offsety], axis = 1)

	ndim = ker_shape**2 * offsetx.partial_shape[2] * offsetx.partial_shape[3] * 2
	offset = FullyConnected(
		name + "offset", offsetx, output_dim = ndim,
		W = G(mean = 0, std = (1 / ndim)**2),
		#W = C(0),
		b = C(0),
		nonlinearity = Identity()
		)
	offsetx = offset[:, :ndim // 2].reshape(offsetx.shape)
	offsety = offset[:, ndim // 2:].reshape(offsety.shape)
	"""
	offsetx = FullyConnected(
		name + "offsetx", offsetx, output_dim = ndim,
		W = G(mean = 0, std = gamma / ndim),
		b = C(0),
		nonlinearity = Identity()
		)
	offsetx = offsetx.reshape(offsety.shape)
	offsety = FullyConnected(
		name + "offsety", offsety, output_dim = ndim,
		W = G(mean = 0, std = gamma / ndim),
		b = C(0),
		nonlinearity = Identity()
		)
	offsety = offsety.reshape(offsetx.shape)
	print(offsety.partial_shape)
	"""

	#offsetx = ZeroGrad(offsetx)
	#offsety = ZeroGrad(offsety)
	outputs = []
	for sx in range(2):
		for sy in range(2):
			if sx == 0:
				ofx = Floor(offsetx)
				bilx = 1 - (offsetx - ofx)
			else:
				ofx = Ceil(offsetx)
				bilx = 1 - (ofx - offsetx)
			if sy == 0:
				ofy = Floor(offsety)
				bily = 1 - (offsety - ofy)
			else:
				ofy = Ceil(offsety)
				bily = 1 - (ofy - offsety)
			"""
			No padding
			padding1 = ConstProvider(np.zeros((inp.partial_shape[0], inp.partial_shape[1], 1, inp.partial_shape[3])))
			padding2 = ConstProvider(np.zeros((inp.partial_shape[0], inp.partial_shape[1], inp.partial_shape[2] + 2, 1)))
			arg_fea = Concat([padding1, inp, padding1], axis = 2)
			arg_fea = Concat([padding2, arg_fea, padding2], axis = 3)
			"""
			arg_fea = inp

			#one_mat = ConstProvider(np.ones((inp.partial_shape[2], inp.partial_shape[3])), dtype = np.int32)
			one_mat = ConstProvider(1, dtype = np.int32).add_axis(0).broadcast((ofx.shape[2], ofx.shape[3]))
			affx = (Cumsum(one_mat, axis = 0) - 1) * stride
			affy = (Cumsum(one_mat, axis = 1) - 1) * stride

			ofx = ofx + affx.dimshuffle('x', 'x', 0, 1)
			ofy = ofy + affy.dimshuffle('x', 'x', 0, 1)
			one_mat = ConstProvider(np.ones((ker_shape, ofx.partial_shape[2], ofx.partial_shape[3])))
			#ofx[:, :ker_shape, :, :] -= 1
			#ofx[:, ker_shape*2:, :, :] += 1
			ofx += Concat([one_mat * i for i in dx], axis = 0).dimshuffle('x', 0, 1, 2)
			#ofy[:, ::3, :, :] -= 1
			#ofy[:, 2::3, :, :] += 1
			one_mat = ones((1, ofx.partial_shape[2], ofx.partial_shape[3]))
			one_mat = Concat([one_mat * i for i in dy], axis = 0)
			one_mat = Concat([one_mat] * ker_shape, axis = 0)
			ofy += one_mat.dimshuffle('x', 0, 1, 2)
			ofx = Max(Min(ofx, arg_fea.partial_shape[2] - 1), 0)
			ofy = Max(Min(ofy, arg_fea.partial_shape[3] - 1), 0)

			def DeformReshape(inp, ker_shape):
				inp = inp.reshape(inp.shape[0], ker_shape, ker_shape, inp.shape[2], inp.partial_shape[3])
				inp = inp.dimshuffle(0, 3, 1, 4, 2)
				inp = inp.reshape(inp.shape[0], inp.shape[1] * inp.shape[2], inp.shape[3] * inp.shape[4])
				return inp

			ofx = DeformReshape(ofx, ker_shape)
			ofy = DeformReshape(ofy, ker_shape)
			bilx = DeformReshape(bilx, ker_shape)
			bily = DeformReshape(bily, ker_shape)

			of = ofx * arg_fea.partial_shape[2] + ofy
			arg_fea = arg_fea.reshape(arg_fea.shape[0], arg_fea.shape[1], -1)
			of = of.reshape(ofx.shape[0], -1)
			of = of.dimshuffle(0, 'x', 1)
			#of = Concat([of] * arg_fea.partial_shape[1], axis = 1)
			of = of.broadcast((of.shape[0], arg_fea.shape[1], of.shape[2]))
			arx = Linspace(0, arg_fea.shape[0], arg_fea.shape[0], endpoint = False)
			arx = arx.add_axis(1).add_axis(2).broadcast(of.shape)
			ary = Linspace(0, arg_fea.shape[1], arg_fea.shape[1], endpoint = False)
			ary = ary.add_axis(0).add_axis(2).broadcast(of.shape)
			of = of.add_axis(3)
			arx = arx.add_axis(3)
			ary = ary.add_axis(3)
			idxmap = Astype(Concat([arx, ary, of], axis = 3), np.int32)
			"""
			sample = []
			for i in range(arg_fea.partial_shape[0]):
				for j in range(arg_fea.partial_shape[1]):
					sample.append(arg_fea[i][j].ai[of[i][j]].dimshuffle('x', 0))
			sample = Concat(sample, axis = 0)
			"""
			sample = IndexingRemap(arg_fea, idxmap).reshape(inp.shape[0], inp.shape[1], bilx.shape[1], -1)
			bilx = bilx.dimshuffle(0, 'x', 1, 2).broadcast(sample.shape)
			bily = bily.dimshuffle(0, 'x', 1, 2).broadcast(sample.shape)
			sample *= bilx * bily
			
			outputs.append(sample)
	
	output = outputs[0]
	for i in outputs[1:]:
		output += i
	
	return Pooling2D(name, output, window = 2, mode = "AVERAGE")
Example #30
0
conv3 = Conv2D("conv3", pooling1, kernel_shape = 3, output_nr_channel = 10, 
			W = G(mean = 0.0001, std = (1 / (5 * 3 * 3))**0.5),
			b = C(0),
			padding = (1, 1),
			nonlinearity = ReLU())
conv4 = Conv2D("conv4", conv3, kernel_shape = 3, output_nr_channel = 10,
			W = G(mean = 0.0001, std = (1 / (10 * 3 * 3))**0.5),
			b = C(0),
			padding = (1, 1),
			nonlinearity = ReLU())
pooling2 = Pooling2D("pooling2", conv4, window = (2, 2), mode = "max")

feature = pooling2.reshape((-1, 7 * 7 * 10))
fc1 = FC("fc1", feature, output_dim = 100,
			W = G(mean = 0.0001, std = (1 / 490)**0.5),
			b = C(0),
			nonlinearity = ReLU())
fc2 = FC("fc2", fc1, output_dim = 10,
			W = G(mean = 0, std = (1 / 100)**0.5),
			b = C(0),
			nonlinearity = Identity())
#output_mat = Exp(fc2) / Exp(fc2).sum(axis = 1).dimshuffle(0, 'x')
pred = Softmax("pred", fc2)

label = DataProvider(name = "label", shape = (minibatch_size, ), dtype = np.int32)
#loss = -Log(indexing_one_hot(output_mat, 1, label)).mean()
loss = CrossEntropyLoss(pred, label)

network = Network(pred, loss)