Example #1
0
from melusine.prepare_email.mail_segmenting import split_message_to_sentences
from melusine.utils.multiprocessing import apply_by_multiprocessing
from melusine.nlp_tools.tokenizer import Tokenizer
from melusine.config.config import ConfigJsonReader

conf_reader = ConfigJsonReader()


class Streamer:
    """Class to transform pd.Series into stream.

    Used to prepare the data for the training of the phraser and embeddings.

    Attributes
    ----------
    column : str,
        Input text column(s) to consider for the streamer.

    stream : MailIterator object,
        Stream of all the tokens of the pd.Series.

    Examples
    --------
    >>> streamer = Streamer()
    >>> streamer.to_stream(X) # will build the stream attribute
    >>> tokens_stream =  = streamer.stream
    >>> print(tokens_stream)

    """
    def __init__(self, stop_removal=False, column="clean_body", n_jobs=1):
        self.column_ = column
Example #2
0
from sklearn.base import BaseEstimator, ClassifierMixin
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.models import model_from_json
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import TensorBoard
from transformers import CamembertTokenizer, XLMTokenizer
from transformers import TFCamembertModel, TFFlaubertModel

from melusine.config.config import ConfigJsonReader
from melusine.nlp_tools.tokenizer import Tokenizer
from melusine.models.attention_model import PositionalEncoding
from melusine.models.attention_model import TransformerEncoderLayer
from melusine.models.attention_model import MultiHeadAttention

conf_reader = ConfigJsonReader()
config = conf_reader.get_config_file()
tensorboard_callback_parameters = config["tensorboard_callback"]


class NeuralModel(BaseEstimator, ClassifierMixin):
    """Generic class for  neural models.

    It is compatible with scikit-learn API (i.e. contains fit, transform
    methods).

    Parameters
    ----------
    neural_architecture_function : function,
        Function which returns a Model instance from Keras.
        Implemented model functions are: cnn_model, rnn_model, transformers_model, bert_model