def gradient_xy(image): # Compute the gradient of the image grad = fast_gradient(image) # Slice off the gradient for X and Y separately grad_y = Image(grad.pixels[:image.n_channels]) grad_x = Image(grad.pixels[image.n_channels:]) return grad_x, grad_y
def gradient(self, image): # Compute the gradient of the image grad = fast_gradient(image) # Create gradient image for X and Y grad_y = Image(grad.pixels[: self.n_channels]) grad_x = Image(grad.pixels[self.n_channels :]) return grad_x, grad_y
def gradient(self, image): # Compute the gradient of the image grad = fast_gradient(image) # Create gradient image for X and Y grad_y = Image(grad.pixels[:self.n_channels]) grad_x = Image(grad.pixels[self.n_channels:]) return grad_x, grad_y
def gradient(self, image): r""" Function that computes the gradient of the image. Parameters ---------- image : :map:`Image` The input image. Returns ------- gradient : `ndarray` The computed gradient. """ pixels = image.pixels nabla = fast_gradient(pixels.reshape((-1, ) + self.patch_shape)) # remove 1st dimension gradient which corresponds to the gradient # between parts return nabla.reshape((2, ) + pixels.shape)
def gradient(self, image): r""" Function that computes the gradient of the image. Parameters ---------- image : :map:`Image` The input image. Returns ------- gradient : `ndarray` The computed gradient. """ pixels = image.pixels nabla = fast_gradient(pixels.reshape((-1,) + self.patch_shape)) # remove 1st dimension gradient which corresponds to the gradient # between parts return nabla.reshape((2,) + pixels.shape)
def gradient(self, image): g = fast_gradient(image.pixels.reshape( (-1,) + self.algorithm.appearance_model.mean().shape[-2:])) return g.reshape((2,) + image.pixels.shape)
def gradient(self, image): return fast_gradient(image).set_boundary_pixels().as_vector().reshape((2, image.n_channels, -1))
def gradient(self, img): nabla = fast_gradient(img) nabla.set_boundary_pixels() return nabla.as_vector().reshape((2, img.n_channels, -1))
def gradient(self, image): pixels = image.pixels nabla = fast_gradient(pixels.reshape((-1,) + self.patch_shape)) # remove 1st dimension gradient which corresponds to the gradient # between parts return nabla.reshape((2,) + pixels.shape)