Example #1
0
def test_angles():
    # 3-4-5 triangle
    points = numpy.array([[0.0, 0.0, 0.0], [3.0, 0.0, 0.0], [0.0, 4.0, 0.0]])
    cells = numpy.array([[0, 1, 2]])
    mesh = meshplex.MeshTri(points, cells)

    tol = 1.0e-14

    assert near_equal(
        mesh.angles,
        [[numpy.pi / 2], [numpy.arcsin(4.0 / 5.0)], [numpy.arcsin(3.0 / 5.0)]],
        tol,
    )

    # 30-60-90 triangle
    a = 1.0
    points = numpy.array(
        [[0.0, 0.0, 0.0], [a / 2, 0.0, 0.0], [0.0, a / 2 * numpy.sqrt(3.0), 0.0]]
    )
    cells = numpy.array([[0, 1, 2]])
    mesh = meshplex.MeshTri(points, cells)

    ic = mesh.angles / numpy.pi * 180
    assert near_equal(ic, [[90], [60], [30]], tol)
    return
Example #2
0
def test_degenerate_flip():
    # almost degenerate
    points = [
        [0.0, 0.0],
        [0.5, -1.0e-5],
        [1.0, 0.0],
        [0.5, 0.5],
    ]
    cells = [[0, 2, 1], [0, 2, 3]]
    mesh = meshplex.MeshTri(points, cells)
    num_flips = mesh.flip_until_delaunay()
    assert num_flips == 1
    ref = np.array([[1, 0, 3], [1, 3, 2]])
    assert np.all(mesh.cells("points") == ref)

    # make sure the same thing happens if the cell is exactly degenerate
    points = [
        [0.0, 0.0],
        [0.5, 0.0],
        [1.0, 0.0],
        [0.5, 0.5],
    ]
    cells = [[0, 2, 1], [0, 2, 3]]
    mesh = meshplex.MeshTri(points, cells)
    num_flips = mesh.flip_until_delaunay()
    assert num_flips == 1
    ref = np.array([[1, 0, 3], [1, 3, 2]])
    assert np.all(mesh.cells("points") == ref)
Example #3
0
def test_flip_delaunay():
    filename = download_mesh("pacman.msh", "2da8ff96537f844a95a83abb48471b6a")
    mesh = meshio.read(filename)

    numpy.random.seed(123)
    mesh.points[:, :2] += 5.0e-2 * numpy.random.rand(*mesh.points[:, :2].shape)

    mesh = meshplex.MeshTri(mesh.points, mesh.cells["triangle"])

    assert mesh.num_delaunay_violations() == 16

    mesh.flip_until_delaunay()
    assert mesh.num_delaunay_violations() == 0

    # Assert edges_cells integrity
    for cell_gid, edge_gids in enumerate(mesh.cells["edges"]):
        for edge_gid in edge_gids:
            num_adj_cells, edge_id = mesh._edge_gid_to_edge_list[edge_gid]
            assert cell_gid in mesh._edges_cells[num_adj_cells][edge_id]

    new_cells = mesh.cells["nodes"].copy()
    new_coords = mesh.node_coords.copy()

    # Assert that some key values are updated properly
    mesh2 = meshplex.MeshTri(new_coords, new_cells)
    assert numpy.all(mesh.idx_hierarchy == mesh2.idx_hierarchy)
    tol = 1.0e-15
    assert near_equal(mesh.half_edge_coords, mesh2.half_edge_coords, tol)
    assert near_equal(mesh.cell_volumes, mesh2.cell_volumes, tol)
    assert near_equal(mesh.ei_dot_ej, mesh2.ei_dot_ej, tol)

    return
Example #4
0
def test_flip_delaunay():
    mesh = meshio.read(this_dir / "meshes" / "pacman.vtk")

    numpy.random.seed(123)
    mesh.points[:, :2] += 5.0e-2 * numpy.random.rand(*mesh.points[:, :2].shape)

    mesh = meshplex.MeshTri(mesh.points, mesh.get_cells_type("triangle"))

    assert mesh.num_delaunay_violations() == 16

    mesh.flip_until_delaunay()
    assert mesh.num_delaunay_violations() == 0

    # Assert edges_cells integrity
    for cell_gid, edge_gids in enumerate(mesh.cells["edges"]):
        for edge_gid in edge_gids:
            num_adj_cells, edge_id = mesh._edge_gid_to_edge_list[edge_gid]
            assert cell_gid in mesh._edges_cells[num_adj_cells][edge_id]

    new_cells = mesh.cells["nodes"].copy()
    new_coords = mesh.node_coords.copy()

    # Assert that some key values are updated properly
    mesh2 = meshplex.MeshTri(new_coords, new_cells)
    assert numpy.all(mesh.idx_hierarchy == mesh2.idx_hierarchy)
    tol = 1.0e-15
    assert near_equal(mesh.half_edge_coords, mesh2.half_edge_coords, tol)
    assert near_equal(mesh.cell_volumes, mesh2.cell_volumes, tol)
    assert near_equal(mesh.ei_dot_ej, mesh2.ei_dot_ej, tol)
Example #5
0
def test_set_points():
    points = np.array([[0.0, 0.0], [1.0, 0.0], [0.0, 1.0]])
    cells = np.array([[0, 1, 2]])
    mesh = meshplex.MeshTri(points, cells)

    mesh.set_points([0.1, 0.1], [0])
    ref = mesh.cell_volumes.copy()

    mesh2 = meshplex.MeshTri(mesh.points, mesh.cells("points"))
    assert np.all(np.abs(ref - mesh2.cell_volumes) < 1.0e-10)
Example #6
0
def setup(n):
    radius = 1.0
    k = np.arange(n)
    boundary_pts = radius * np.column_stack(
        [np.cos(2 * np.pi * k / n),
         np.sin(2 * np.pi * k / n)])

    # Compute the number of interior points such that all triangles can be somewhat
    # equilateral.
    edge_length = 2 * np.pi * radius / n
    domain_area = np.pi - n * (radius**2 / 2 *
                               (edge_length - np.sin(edge_length)))
    cell_area = np.sqrt(3) / 4 * edge_length**2
    target_num_cells = domain_area / cell_area
    # Euler:
    # 2 * num_points - num_boundary_edges - 2 = num_cells
    # <=>
    # num_interior_points ~= 0.5 * (num_cells + num_boundary_edges) + 1 - num_boundary_points
    m = int(0.5 * (target_num_cells + n) + 1 - n)

    # generate random points in circle;
    # <https://mathworld.wolfram.com/DiskPointPicking.html>
    for seed in range(0, 255):
        np.random.seed(seed)
        r = np.random.rand(m)
        alpha = 2 * np.pi * np.random.rand(m)

        interior_pts = np.column_stack(
            [np.sqrt(r) * np.cos(alpha),
             np.sqrt(r) * np.sin(alpha)])

        pts = np.concatenate([boundary_pts, interior_pts])

        tri = Delaunay(pts)

        # Make sure there are exactly `n` boundary points
        mesh0 = meshplex.MeshTri(pts, tri.simplices)
        mesh1 = meshplex.MeshTri(pts, tri.simplices)
        if np.sum(mesh0.is_boundary_point) == n:
            break

    mesh0.create_edges()
    mesh1.create_edges()

    num_interior_edges = np.sum(mesh0.is_interior_edge)
    idx = random.sample(range(num_interior_edges), n // 10)
    print(num_interior_edges, len(idx), len(idx) / num_interior_edges)

    # # move interior points a little bit such that we have edges to flip
    # max_step = np.min(mesh.cell_inradius) / 2
    # mesh.points = mesh.points + max_step * np.random.rand(*mesh.points.shape)
    # print(mesh.num_delaunay_violations)
    return mesh0, mesh1, idx
Example #7
0
def test_update_point_coordinates():
    mesh = meshio.read(this_dir / ".." / "meshes" / "pacman.vtu")
    assert np.all(np.abs(mesh.points[:, 2]) < 1.0e-15)

    mesh1 = meshplex.MeshTri(mesh.points, mesh.get_cells_type("triangle"))

    np.random.seed(123)
    X2 = mesh.points + 1.0e-2 * np.random.rand(*mesh.points.shape)
    mesh2 = meshplex.MeshTri(X2, mesh.get_cells_type("triangle"))

    mesh1.points = X2

    tol = 1.0e-12
    assert is_near_equal(mesh1.cell_volumes, mesh2.cell_volumes, tol)
Example #8
0
def test_degenerate_small2(h):
    points = numpy.array([[0, 0, 0], [1, 0, 0], [0.5, h, 0.0], [0.5, -h, 0.0]])
    cells = numpy.array([[0, 1, 2], [0, 1, 3]])
    mesh = meshplex.MeshTri(points, cells)

    tol = 1.0e-11

    # ce_ratios
    alpha = h - 1.0 / (4 * h)
    beta = 1.0 / (4 * h)
    assert near_equal(mesh.ce_ratios_per_interior_edge, [alpha], tol)

    alpha2 = (h - 1.0 / (4 * h)) / 2
    assert near_equal(mesh.ce_ratios,
                      [[beta, beta], [beta, beta], [alpha2, alpha2]], tol)

    # control volumes
    alpha1 = 0.125 * (3 * h - 1.0 / (4 * h))
    alpha2 = 0.125 * (h + 1.0 / (4 * h))
    assert near_equal(mesh.control_volumes, [alpha1, alpha1, alpha2, alpha2],
                      tol)

    # circumcenters
    assert near_equal(mesh.cell_circumcenters,
                      [[0.5, -12.495, 0.0], [0.5, +12.495, 0.0]], tol)

    # cell volumes
    assert near_equal(mesh.cell_volumes, [0.5 * h, 0.5 * h], tol)

    assert mesh.num_delaunay_violations() == 1

    return
Example #9
0
def get_disk_mesh(k):
    import meshzoo

    points, cells = meshzoo.disk(6, k + 1)
    out = meshplex.MeshTri(points, cells)
    # out.show()
    return out
def test_jacobian():
    from test_ginzburg_landau import GinzburgLandau

    a = 10.0
    n = 10
    points, cells = meshzoo.rectangle(-a / 2, a / 2, -a / 2, a / 2, n, n)
    mesh = meshplex.MeshTri(points, cells)

    gl = GinzburgLandau(mesh)
    glr = GinzburgLandauReal(mesh)

    n = points.shape[0]

    numpy.random.seed(123)

    for _ in range(10):
        psi = numpy.random.rand(n) + 1j * numpy.random.rand(n)
        mu = numpy.random.rand(1)[0]
        jac0 = gl.jacobian(psi, mu)
        jac1 = glr.jacobian(to_real(psi), mu)
        for _ in range(10):
            phi = numpy.random.rand(n) + 1j * numpy.random.rand(n)
            out0 = (jac0 * phi) * mesh.control_volumes
            out1 = to_complex(jac1 * to_real(phi))
            assert numpy.all(numpy.abs(out0 - out1) < 1.0e-12)
def test_jacobian():
    from test_ginzburg_landau import GinzburgLandau

    a = 10.0
    n = 10
    points, cells = meshzoo.rectangle_tri((-a / 2, -a / 2), (a / 2, a / 2), n)
    # add column with zeros for magnetic potential
    points = np.column_stack([points, np.zeros(points.shape[0])])

    mesh = meshplex.MeshTri(points, cells)

    gl = GinzburgLandau(mesh)
    glr = GinzburgLandauReal(mesh)

    n = points.shape[0]

    np.random.seed(123)

    for _ in range(10):
        psi = np.random.rand(n) + 1j * np.random.rand(n)
        mu = np.random.rand(1)[0]
        jac0 = gl.jacobian(psi, mu)
        jac1 = glr.jacobian(to_real(psi), mu)
        for _ in range(10):
            phi = np.random.rand(n) + 1j * np.random.rand(n)
            out0 = (jac0 * phi) * mesh.control_volumes
            out1 = to_complex(jac1 * to_real(phi))
            assert np.all(np.abs(out0 - out1) < 1.0e-12)
Example #12
0
def gosplElev(coords, cells, elev, gmesh, visvtk=False):

    Gmesh = meshplex.MeshTri(coords, cells)
    s = Gmesh.idx_hierarchy.shape
    a = np.sort(Gmesh.idx_hierarchy.reshape(s[0], -1).T)

    if meshplex.__version__ >= "0.16.0":
        Gmesh.edges = {"points": np.unique(a, axis=0)}
        ngbNbs, ngbID = definegtin(len(coords), Gmesh.cells("points"),
                                   Gmesh.edges["points"])
    elif meshplex.__version__ >= "0.14.0":
        Gmesh.edges = {"points": np.unique(a, axis=0)}
        ngbNbs, ngbID = definegtin(len(coords), Gmesh.cells["points"],
                                   Gmesh.edges["points"])
    else:
        Gmesh.edges = {"nodes": np.unique(a, axis=0)}
        ngbNbs, ngbID = definegtin(len(coords), Gmesh.cells["nodes"],
                                   Gmesh.edges["nodes"])

    np.savez_compressed(gmesh,
                        v=coords,
                        c=cells,
                        n=ngbID[:, :8].astype(int),
                        z=elev)

    if visvtk:
        paleovtk = gmesh + ".vtk"
        vis_mesh = meshio.Mesh(coords, {"triangle": cells},
                               point_data={"z": elev})
        meshio.write(paleovtk, vis_mesh)
        print("Writing VTK file {}".format(paleovtk))

    return
Example #13
0
def run_SeismicMesh(ef, HMIN=75.0):

    bbox = (-12000, 0.0, 0.0, 67000.0)

    rectangle = Rectangle(bbox)

    t1 = time.time()
    points, cells = generate_mesh(
        domain=rectangle,
        edge_length=ef,
        h0=HMIN,
        max_iter=25,
        delta_t=0.3,
    )
    points, cells = geometry.delete_boundary_entities(points,
                                                      cells,
                                                      dim=2,
                                                      min_qual=0.10)
    elapsed = time.time() - t1

    # meshio.write_points_cells(
    #    "BP2004_sm.vtk",
    #    points,
    #    [("triangle", cells)],
    #    file_format="vtk",
    # )

    plex = meshplex.MeshTri(points, cells)
    quality = numpy.abs(plex.cell_quality)

    num_cells = len(cells)
    num_vertices = len(points)

    return quality, elapsed, num_vertices, num_cells
Example #14
0
def test_update_node_coordinates():
    mesh = meshio.read(this_dir / "meshes" / "pacman.vtk")
    assert numpy.all(numpy.abs(mesh.points[:, 2]) < 1.0e-15)

    mesh1 = meshplex.MeshTri(mesh.points, mesh.get_cells_type("triangle"))

    numpy.random.seed(123)
    X2 = mesh.points + 1.0e-2 * numpy.random.rand(*mesh.points.shape)
    mesh2 = meshplex.MeshTri(X2, mesh.get_cells_type("triangle"))

    mesh1.node_coords = X2
    mesh1.update_values()

    tol = 1.0e-12
    assert near_equal(mesh1.ei_dot_ej, mesh2.ei_dot_ej, tol)
    assert near_equal(mesh1.cell_volumes, mesh2.cell_volumes, tol)
Example #15
0
def test_flip_simple_opposite_orientation():
    #        3                   3
    #        A                   A
    #       /|\                 / \
    #     1/ | \4             1/ 1 \4
    #     /  |  \             /     \
    #   0/ 0 3   \2   ==>   0/___3___\2
    #    \   | 1 /           \       /
    #     \  |  /             \     /
    #     0\ | /2             0\ 0 /2
    #       \|/                 \ /
    #        V                   V
    #        1                   1
    #
    points = np.array([[-0.1, 0.0], [0.0, -1.0], [0.1, 0.0], [0.0, 1.1]])
    cells = np.array([[0, 1, 3], [1, 3, 2]])
    mesh = meshplex.MeshTri(points, cells)

    mesh.create_facets()
    assert mesh.num_delaunay_violations == 1
    assert np.array_equal(mesh.edges["points"],
                          [[0, 1], [0, 3], [1, 2], [1, 3], [2, 3]])
    assert np.array_equal(mesh.cells("edges"), [[3, 1, 0], [4, 2, 3]])
    assert_mesh_consistency(mesh)

    # mesh.show()
    mesh.flip_until_delaunay()
    assert_mesh_consistency(mesh)
    assert mesh.num_delaunay_violations == 0
    assert np.array_equal(mesh.edges["points"],
                          [[0, 1], [0, 3], [1, 2], [0, 2], [2, 3]])
    assert np.array_equal(mesh.cells("points"), [[0, 1, 2], [0, 2, 3]])
    assert np.array_equal(mesh.cells("edges"), [[2, 3, 0], [4, 1, 3]])
Example #16
0
def test_flip_orientation():
    points = np.array([[0.0, +0.0], [0.5, -0.1], [1.0, +0.0], [0.5, +0.1]])

    # preserve positive orientation
    cells = np.array([[0, 1, 2], [0, 2, 3]])
    mesh = meshplex.MeshTri(points, cells)
    assert np.all(mesh.signed_cell_volumes > 0.0)
    mesh.flip_until_delaunay()
    assert np.all(mesh.signed_cell_volumes > 0.0)

    # also preserve negative orientation
    cells = np.array([[0, 2, 1], [0, 3, 2]])
    mesh = meshplex.MeshTri(points, cells)
    assert np.all(mesh.signed_cell_volumes < 0.0)
    mesh.flip_until_delaunay()
    assert np.all(mesh.signed_cell_volumes < 0.0)
Example #17
0
def test():
    class EnergyEdgeKernel:
        def __init__(self):
            self.subdomains = [None]
            return

        def eval(self, mesh, cell_mask):
            edge_ce_ratio = mesh.ce_ratios[..., cell_mask]
            beta = 1.0
            return numpy.array([
                [edge_ce_ratio, -edge_ce_ratio * numpy.exp(1j * beta)],
                [-edge_ce_ratio * numpy.exp(-1j * beta), edge_ce_ratio],
            ])

    vertices, cells = meshzoo.rectangle(0.0, 2.0, 0.0, 1.0, 101, 51)
    mesh = meshplex.MeshTri(vertices, cells)

    matrix = pyfvm.get_fvm_matrix(mesh, [EnergyEdgeKernel()], [], [], [])
    rhs = mesh.control_volumes.copy()

    sa = pyamg.smoothed_aggregation_solver(matrix, smooth="energy")
    u = sa.solve(rhs, tol=1e-10)

    # Cannot write complex data ot VTU; split real and imaginary parts first.
    # <http://stackoverflow.com/a/38902227/353337>
    mesh.write("out.vtk", point_data={"u": u.view("(2,)float")})
    return
Example #18
0
def test_flip_same_edge_twice():
    points = numpy.array([[0.0, +0.0, 0.0], [0.5, -0.1, 0.0], [1.0, +0.0, 0.0],
                          [0.5, +0.1, 0.0]])
    cells = numpy.array([[0, 1, 2], [0, 2, 3]])
    mesh = meshplex.MeshTri(points, cells)
    assert mesh.num_delaunay_violations() == 1

    mesh.flip_until_delaunay()
    assert mesh.num_delaunay_violations() == 0

    # Assert edges_cells integrity
    for cell_gid, edge_gids in enumerate(mesh.cells["edges"]):
        for edge_gid in edge_gids:
            num_adj_cells, edge_id = mesh._edge_gid_to_edge_list[edge_gid]
            assert cell_gid in mesh._edges_cells[num_adj_cells][edge_id]

    new_points = numpy.array([[0.0, +0.0, 0.0], [0.1, -0.5, 0.0],
                              [0.2, +0.0, 0.0], [0.1, +0.5, 0.0]])
    mesh.node_coords = new_points
    mesh.update_values()
    assert mesh.num_delaunay_violations() == 1

    mesh.flip_until_delaunay()
    assert mesh.num_delaunay_violations() == 0
    mesh.show()

    return
Example #19
0
def test_flip_delaunay_near_boundary_preserve_boundary_count():
    # This test is to make sure meshplex preserves the boundary node count.
    points = numpy.array([
        [+0.0, +0.0, 0.0],
        [+0.5, -0.5, 0.0],
        [+0.5, +0.5, 0.0],
        [+0.0, +0.6, 0.0],
        [-0.5, +0.5, 0.0],
        [-0.5, -0.5, 0.0],
    ])
    cells = numpy.array([[0, 1, 2], [0, 2, 4], [0, 4, 5], [0, 5, 1], [2, 3,
                                                                      4]])
    mesh = meshplex.MeshTri(points, cells)

    mesh.create_edges()
    assert mesh.num_delaunay_violations() == 1

    mesh.mark_boundary()
    is_boundary_node_ref = [False, True, True, True, True, True]
    assert numpy.array_equal(mesh.is_boundary_node, is_boundary_node_ref)

    mesh.flip_until_delaunay()

    mesh.mark_boundary()
    assert numpy.array_equal(mesh.is_boundary_node, is_boundary_node_ref)
    return
Example #20
0
def test_shell():
    points = numpy.array(
        [
            [+0.0, +0.0, +1.0],
            [+1.0, +0.0, +0.0],
            [+0.0, +1.0, +0.0],
            [-1.0, +0.0, +0.0],
            [+0.0, -1.0, +0.0],
        ]
    )
    cells = numpy.array([[0, 1, 2], [0, 2, 3], [0, 3, 4], [0, 1, 4]])
    mesh = meshplex.MeshTri(points, cells)

    tol = 1.0e-14
    ce_ratios = 0.5 / numpy.sqrt(3.0) * numpy.ones((4, 3))
    assert near_equal(mesh.ce_ratios.T, ce_ratios, tol)

    cv = numpy.array([2.0, 1.0, 1.0, 1.0, 1.0]) / numpy.sqrt(3.0)
    assert near_equal(mesh.control_volumes, cv, tol)

    cell_vols = numpy.sqrt(3.0) / 2.0 * numpy.ones(4)
    assert near_equal(mesh.cell_volumes, cell_vols, tol)

    assert mesh.num_delaunay_violations() == 0

    return
Example #21
0
def test():
    class D1(Subdomain):
        def is_inside(self, x):
            return x[1] < 0.5

        is_boundary_only = True

    class Poisson:
        def apply(self, u):
            return (integrate(lambda x: -n_dot_grad(u(x)), dS) +
                    integrate(lambda x: 3.0, dGamma) -
                    integrate(lambda x: 1.0, dV))

        def dirichlet(self, u):
            return [(u, D1())]

    vertices, cells = meshzoo.rectangle(0.0, 1.0, 0.0, 1.0, 51, 51)
    mesh = meshplex.MeshTri(vertices, cells)

    matrix, rhs = pyfvm.discretize_linear(Poisson(), mesh)

    u = linalg.spsolve(matrix, rhs)

    mesh.write("out.vtk", point_data={"u": u})
    return
Example #22
0
def test():
    class Bratu:
        def apply(self, u):
            return integrate(lambda x: -n_dot_grad(u(x)), dS) - integrate(
                lambda x: 2.0 * exp(u(x)), dV)

        def dirichlet(self, u):
            return [(u, Boundary())]

    vertices, cells = meshzoo.rectangle(0.0, 2.0, 0.0, 1.0, 101, 51)
    mesh = meshplex.MeshTri(vertices, cells)

    f, jac_u = pyfvm.discretize(Bratu(), mesh)

    def jacobian_solver(u0, rhs):
        from scipy.sparse import linalg

        jac = jac_u.get_linear_operator(u0)
        return linalg.spsolve(jac, rhs)

    u0 = numpy.zeros(len(vertices))
    u = pyfvm.newton(lambda u: f.eval(u), jacobian_solver, u0)
    # import scipy.optimize
    # u = scipy.optimize.newton_krylov(f_eval, u0)

    mesh.write("out.vtk", point_data={"u": u})
    return
Example #23
0
def run_gmsh(ef, HMIN=75.0):
    with pygmsh.geo.Geometry() as geom:

        geom.add_polygon([
            [-12e3, 0.0],
            [-12e3, 67e3],
            [0.0, 67e3],
            [0.0, 0.0],
        ])

        geom.set_mesh_size_callback(lambda dim, tag, x, y, z:
                                    (ef.eval([x, y])))
        gmsh.option.setNumber("Mesh.Algorithm", 5)
        gmsh.option.setNumber("Mesh.CharacteristicLengthExtendFromBoundary", 0)

        t1 = time.time()
        mesh = geom.generate_mesh()
        elapsed = time.time() - t1

        points = mesh.points
        cells = mesh.cells[1].data

        num_cells = len(cells)
        num_vertices = len(points)

        plex = meshplex.MeshTri(points, cells)
        quality = numpy.abs(plex.cell_quality)

        # mesh.write("BP2004_gmsh.vtk")
        return quality, elapsed, num_vertices, num_cells
Example #24
0
def compute(fun, h):
    tic = time.time()
    points, cells = fun(h)
    toc = time.time()

    if cells.shape[1] == 3:
        mesh = meshplex.MeshTri(points, cells)
    else:
        assert cells.shape[1] == 4
        mesh = meshplex.MeshTetra(points, cells)

    if fun.__name__ == "sphere" or numpy.min(mesh.q_radius_ratio) < 1.0e-5:
        num_poisson_steps = numpy.nan
    else:
        poisson_tol = 1.0e-10
        # num_poisson_steps = get_poisson_steps_dolfin(points, cells, poisson_tol)
        num_poisson_steps = get_poisson_steps_scikitfem(points, cells, poisson_tol)

    return {
        "time": toc - tic,
        # convert to python float types to JSON compatibility
        "quality_min": float(numpy.min(mesh.q_radius_ratio)),
        "quality_avg": float(numpy.average(mesh.q_radius_ratio)),
        "energy": energy(mesh),
        "num_nodes": mesh.points.shape[0],
        "num_poisson_steps": num_poisson_steps,
    }
Example #25
0
def test_regular_tri_order():
    points = numpy.array([[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [1.0, 0.0, 0.0]])
    cells = numpy.array([[0, 1, 2]])

    mesh = meshplex.MeshTri(points, cells)
    assert all((mesh.cells["nodes"] == [0, 1, 2]).flat)

    tol = 1.0e-14

    # ce_ratios
    assert near_equal(mesh.ce_ratios.T, [0.5, 0.0, 0.5], tol)

    # control volumes
    assert near_equal(mesh.control_volumes, [0.125, 0.25, 0.125], tol)

    # cell volumes
    assert near_equal(mesh.cell_volumes, [0.5], tol)

    # circumcenters
    assert near_equal(mesh.cell_circumcenters, [0.5, 0.5, 0.0], tol)

    # centroids
    assert near_equal(
        mesh.control_volume_centroids,
        [[1.0 / 6.0, 2.0 / 3.0, 0.0], [0.25, 0.25, 0.0],
         [2.0 / 3.0, 1.0 / 6.0, 0.0]],
        tol,
    )

    assert mesh.num_delaunay_violations() == 0

    return
Example #26
0
def test_regular_tri2(a):
    points = (numpy.array([
        [-0.5, -0.5 * numpy.sqrt(3.0), 0],
        [-0.5, +0.5 * numpy.sqrt(3.0), 0],
        [1, 0, 0],
    ]) / numpy.sqrt(3) * a)
    cells = numpy.array([[0, 1, 2]])
    mesh = meshplex.MeshTri(points, cells)

    tol = 1.0e-14

    # ce_ratios
    val = 0.5 / numpy.sqrt(3.0)
    assert near_equal(mesh.ce_ratios, [val, val, val], tol)

    # control volumes
    vol = numpy.sqrt(3.0) / 4 * a**2
    assert near_equal(mesh.control_volumes, [vol / 3.0, vol / 3.0, vol / 3.0],
                      tol)

    # cell volumes
    assert near_equal(mesh.cell_volumes, [vol], tol)

    # circumcenters
    assert near_equal(mesh.cell_circumcenters, [0.0, 0.0, 0.0], tol)

    return
Example #27
0
def run_SeismicMesh(ef, HMIN=75.0):

    bbox = (-12000.0, 0.0, 0.0, 67000.0)

    rectangle = Rectangle(bbox)

    t1 = time.time()
    points, cells = generate_mesh(
        domain=rectangle,
        edge_length=ef,
        verbose=0,
        max_iter=25,
    )
    elapsed = time.time() - t1

    # import meshio

    # meshio.write_points_cells(
    #    "BP2004_sm" + str(HMIN) + ".vtk",
    #    points,
    #    [("triangle", cells)],
    #    file_format="vtk",
    # )

    plex = meshplex.MeshTri(points, cells)
    quality = numpy.abs(plex.cell_quality)

    num_cells = len(cells)
    num_vertices = len(points)

    return quality, elapsed, num_vertices, num_cells
Example #28
0
def test_degenerate_small0b(h):
    points = numpy.array([[0, 0, 0], [1, 0, 0], [0.5, h, 0.0]])
    cells = numpy.array([[0, 1, 2]])
    mesh = meshplex.MeshTri(points, cells)

    tol = 1.0e-14

    # edge lengths
    el = numpy.sqrt(0.5**2 + h**2)
    assert near_equal(mesh.edge_lengths.T, [el, el, 1.0], tol)

    # ce_ratios
    ce0 = 0.5 / h * (h**2 - 0.25)
    ce12 = 0.25 / h
    assert near_equal(mesh.ce_ratios.T, [ce12, ce12, ce0], tol)

    # control volumes
    cv12 = 0.25 * (1.0**2 * ce0 + (0.25 + h**2) * ce12)
    cv0 = 0.5 * (0.25 + h**2) * ce12
    assert near_equal(mesh.control_volumes, [cv12, cv12, cv0], tol)

    # cell volumes
    assert near_equal(mesh.cell_volumes, [0.5 * h], tol)

    # circumcenters
    assert near_equal(mesh.cell_circumcenters, [0.5, 0.375, 0.0], tol)

    assert mesh.num_delaunay_violations() == 0
    return
Example #29
0
def run_SeismicMesh(HMIN=0.01):

    bbox = (-1.0, 1.0, -1.0, 1.0)

    disk = SeismicMesh.geometry.Disk([0, 0], 1)

    def fh(x):
        return numpy.array([HMIN] * len(x))

    t1 = time.time()
    points, cells = SeismicMesh.generate_mesh(
        bbox=bbox,
        h0=HMIN,
        domain=disk,
        edge_length=fh,
        max_iter=25,
        delta_t=0.3,
    )
    elapsed = time.time() - t1

    # meshio.write_points_cells(
    #    "SeismicMesh_circle.vtk",
    #    points,
    #    [("triangle", cells)],
    # )

    plex = meshplex.MeshTri(points, cells)
    quality = numpy.abs(plex.cell_quality)

    num_cells = len(cells)
    num_vertices = len(points)

    return quality, elapsed, num_vertices, num_cells
Example #30
0
def circle_random2(n, radius, seed=0):
    """Boundary points are random, too."""
    # generate random points in circle; <https://mathworld.wolfram.com/DiskPointPicking.html>
    np.random.seed(seed)
    r = np.random.rand(n)
    alpha = 2 * np.pi * np.random.rand(n)

    pts = np.column_stack([np.sqrt(r) * np.cos(alpha), np.sqrt(r) * np.sin(alpha)])
    tri = Delaunay(pts)
    # Make sure there are exactly `n` boundary points
    mesh = meshplex.MeshTri(pts, tri.simplices)
    # inflate the mesh such that the boundary points average around the radius
    boundary_pts = pts[mesh.is_boundary_point]
    dist = np.sqrt(np.einsum("ij,ij->i", boundary_pts, boundary_pts))
    avg_dist = np.sum(dist) / len(dist)
    mesh.points = pts / avg_dist
    # boundary_pts = pts[mesh.is_boundary_point]
    # dist = np.sqrt(np.einsum("ij,ij->i", boundary_pts, boundary_pts))
    # avg_dist = np.sum(dist) / len(dist)
    # print(avg_dist)

    # now move all boundary points to the circle
    # bpts = pts[mesh.is_boundary_point]
    # pts[mesh.is_boundary_point] = (
    #     bpts.T / np.sqrt(np.einsum("ij,ij->i", bpts, bpts))
    # ).T
    # bpts = pts[mesh.is_boundary_point]
    # print(np.sqrt(np.einsum("ij,ij->i", bpts, bpts)))
    # mesh = meshplex.MeshTri(pts, tri.simplices)
    # mesh.show()

    return pts, tri.simplices