Example #1
0
    def fetch_temp(self, variable='tmax', temp_units='C'):
        print('Downloading new {}.....'.format(variable))
        try:
            topowx = TopoWX(date=self.date, bbox=self.bounds,
                            target_profile=self.profile,
                            clip_feature=self.clip_geo, out_file=self.file_path)

            var = topowx.get_data_subset(grid_conform=True, var=variable,
                                         out_file=self.file_path,
                                         temp_units_out=temp_units)
        except ValueError:
            if variable == 'tmax':
                variable = 'tmmx'
            elif variable == 'tmin':
                variable = 'tmmn'
            else:
                raise AttributeError

            print('TopoWX temp retrieval failed, attempting same w/ Gridmet.')

            gridmet = GridMet(variable, date=self.date, bbox=self.bounds,
                              target_profile=self.profile, clip_feature=self.clip_geo)
            var = gridmet.get_data_subset()

        return var
Example #2
0
 def get_precip(self):
     poly_in = self.landsat.get_tile_geometry()
     poly_in = Polygon(poly_in[0]['coordinates'][0])
     project = partial(
         pytransform,
         Proj(self.profile['crs']),
         Proj(init='epsg:32612'))
     for_bounds = partial(
         pytransform,
         Proj(self.profile['crs']),
         Proj(init='epsg:4326'))
     dates = self.scenes['DATE_ACQUIRED'].values
     # Change the coordinate system
     # The issue: the CRSs for the bounding box and for the mask are different.
     # In _project, the incorrect CRS was making it throw an error.
     # the fix? Inputting bounds in a unprojected CRS and 
     # a projected shape for masking.
     poly = transform(project, poly_in)
     poly_bounds = transform(for_bounds, poly_in)
     poly = Polygon(poly.exterior.coords)
     geometry = [mapping(poly)]
     geometry[0]['crs'] = CRS({'init': 'epsg:32612'})
     bounds = poly_bounds.bounds
     for date in dates:
         outfile = os.path.join(self.root, 'precip_{}.tif'.format(date))
         if not os.path.isfile(outfile):
             print("Get {}".format(outfile))
             d = datetime.utcfromtimestamp(date.tolist() / 1e9)  # convert to a nicer format.
             bds = GeoBounds(wsen=bounds)
             gm = GridMet(variable='pr', clip_feature=geometry,
                          bbox=bds, target_profile=self.profile, date=d)
             out = gm.get_data_subset()
             gm.save_raster(out, self.landsat.rasterio_geometry, outfile)
Example #3
0
    def test_agrimet_mesonet_gridmet_etr(self):
        agrimet = Agrimet(station=self.fetch_site,
                          start_date=self.start,
                          end_date=self.end,
                          interval='daily')

        formed = agrimet.fetch_met_data()
        agri_etr = formed['ETRS'].values

        s, e = datetime.strptime(self.start, '%Y-%m-%d'), \
               datetime.strptime(self.end, '%Y-%m-%d')
        gridmet = GridMet('etr', start=s, end=e, lat=self.lat, lon=self.lon)
        gridmet_etr = gridmet.get_point_timeseries()
        gridmet_etr = gridmet_etr.values

        mco = Mesonet(self.covm_mco, start=self.start, end=self.end)
        mesonet_daily = mco.mesonet_etr(lat=46.3, elevation=1000.0)
        mesonet_etr = mesonet_daily['ETR'].values

        plt.plot(gridmet_etr[121:273], label='gridmet')
        plt.plot(mesonet_etr[121:273], label='mesonet')
        plt.plot(agri_etr[121:273], label='agrimet')
        plt.xlabel('GROWING SEASON DAY (MAY 01 - SEP 30)')
        plt.ylabel('Tall Crop Reference ET (mm) daily')
        plt.legend()
        # plt.show()
        saved = os.path.join(os.path.dirname(__file__),
                             'grid_agri_meso_fig.png')
        print('saved to {}'.format(saved))
        plt.savefig(saved)
        ga_ratio = gridmet_etr[121:273].sum() / agri_etr[121:273].sum()
        print('gridmet - agrimet ratio: {}'.format(ga_ratio))
        ma_ratio = mesonet_etr[121:273].sum() / agri_etr[121:273].sum()
        print('mesonet - agrimet ratio: {}'.format(ma_ratio))
Example #4
0
    def fetch_gridmet(self, variable='pet'):
        gridmet = GridMet(variable, date=self.date,
                          bbox=self.bounds,
                          target_profile=self.profile,
                          clip_feature=self.clip_geo)

        var = gridmet.get_data_subset(out_filename=self.file_path)
        return var
Example #5
0
 def test_conforming_array(self):
     """ Test shape of Gridmet vs. Landsat image.
     :return: 
     """
     l8 = Landsat8(self.dir_name_LC8)
     polygon = l8.get_tile_geometry()
     bounds = RasterBounds(affine_transform=l8.rasterio_geometry['transform'], profile=l8.rasterio_geometry)
     gridmet = GridMet(self.var, date=self.date, bbox=bounds,
                       target_profile=l8.rasterio_geometry, clip_feature=polygon)
     pet = gridmet.get_data_subset()
     shape = 1, l8.rasterio_geometry['height'], l8.rasterio_geometry['width']
     self.assertEqual(pet.shape, shape)
Example #6
0
 def test_save_to_netcdf(self):
     """ Test save native netcdf data from Thredds.Gridmet to disk.
     :return: 
     """
     gridmet = GridMet(self.var, date=self.date)
     out = 'data/met_test/{}-{}-{}_pet.nc'.format(self.date.year,
                                                  self.date.month,
                                                  self.date.day)
     gridmet.write_netcdf(outputroot=out)
     self.assertTrue(os.path.exists(out))
     data = open_dataset(out)
     self.assertIsInstance(data, Dataset)
     os.remove(out)
Example #7
0
def correct_pr_mesonet_gridmet(start, end, lat, lon):
    s, e = datetime.strptime(start, '%Y-%m-%d'), \
           datetime.strptime(end, '%Y-%m-%d')
    gridmet = GridMet('pr', start=s, end=e, lat=lat, lon=lon)
    gridmet_ppt = gridmet.get_point_timeseries()
    gridmet_ppt = gridmet_ppt.values

    mco = Mesonet(LOLO_MCO, start=start, end=end)
    mesonet_ppt = mco.mesonet_ppt(daily=True)
    mesonet_ppt = mesonet_ppt['Precipitation'].values
    mesonet_ppt = mesonet_ppt.reshape((mesonet_ppt.shape[0], 1))
    meso_gs_ppt, grid_gs_ppt = mesonet_ppt[121:273], gridmet_ppt[121:273]
    comp = hstack((meso_gs_ppt, grid_gs_ppt))
    pass
Example #8
0
 def test_conforming_array_local(self):
     l8 = Landsat8(self.dir_name_LC8)
     polygon = l8.get_tile_geometry()
     bounds = RasterBounds(
         affine_transform=l8.rasterio_geometry['transform'],
         profile=l8.rasterio_geometry)
     gridmet = GridMet(self.var,
                       date=self.date,
                       bbox=bounds,
                       target_profile=l8.rasterio_geometry,
                       clip_feature=polygon)
     pet = gridmet.get_data_subset(
         file_url='/home/dgketchum/Downloads/{}_{}.nc'.format(
             self.var, self.date.year))
     shape = 1, l8.rasterio_geometry['height'], l8.rasterio_geometry[
         'width']
     self.assertEqual(pet.shape, shape)
Example #9
0
    def test_conforming_array_to_native(self):
        """ Test confoming array to native Gridmet raster.
        Conforming array is what Thredds.Gridmet will build given geometry
        paramters derived from LandsatImage object.  This test builds that
        array, and then compares it with several day's of native Gridmet netcdf
        data.  The rasters can't align perfectly, as the grid has been resampled.
        This is built to look up 30 points, extract their location, get the native
        raster value (i.e., geo) at that location, and the (local) conforming 
        array value.  The ratio of the means from each raster must be w/in
        0.5%.
        :return:
        """
        l8 = Landsat8(self.dir_name_LC8)
        polygon = l8.get_tile_geometry()
        bounds = RasterBounds(
            affine_transform=l8.rasterio_geometry['transform'],
            profile=l8.rasterio_geometry,
            latlon=True)

        for day in rrule(DAILY, dtstart=self.start, until=self.end):
            gridmet = GridMet(self.var,
                              date=day,
                              bbox=bounds,
                              target_profile=l8.rasterio_geometry,
                              clip_feature=polygon)
            date_str = datetime.strftime(day, '%Y-%m-%d')
            met_arr = os.path.join(self.grimet_raster_dir,
                                   'met_{}_{}.tif'.format(date_str, self.var))
            met = gridmet.get_data_subset(out_filename=met_arr)
            native = os.path.join(self.grimet_raster_dir,
                                  '{}_pet.tif'.format(date_str))

            points_dict = multi_raster_point_extract(
                local_raster=met_arr,
                geographic_raster=native,
                points=self.scene_points,
                image_profile=l8.rasterio_geometry)
            geo_list, local_list = [], []
            for key, val in points_dict.items():
                geo_list.append(val['geo_val'])
                local_list.append(val['local_val'])
            ratio = mean(geo_list) / mean(local_list)
            print('Ratio on {} of CONUSRaster:LocalRaster calculated is {}.'.
                  format(datetime.strftime(day, '%Y-%m-%d'), ratio))
            self.assertAlmostEqual(ratio, 1.0, delta=0.005)
            os.remove(met_arr)
Example #10
0
    def test_agrimet_gridmet_precip(self):
        agrimet = Agrimet(station=self.fetch_site,
                          start_date=self.start,
                          end_date=self.end,
                          interval='daily')

        formed = agrimet.fetch_met_data()
        agri_ppt = formed['PP'].values

        s, e = datetime.strptime(self.start, '%Y-%m-%d'), \
               datetime.strptime(self.end, '%Y-%m-%d')
        gridmet = GridMet('pr', start=s, end=e, lat=self.lat, lon=self.lon)
        gridmet_ppt = gridmet.get_point_timeseries()
        gridmet_ppt = gridmet_ppt.values

        difference = abs(gridmet_ppt - agri_ppt)
        self.assertLess(nanmean(difference), -100000)
Example #11
0
    def test_get_time_series(self):
        """ Test native pet rasters vs. xarray netcdf point extract.
        :return: 
        """
        rasters = os.listdir(self.grimet_raster_dir)
        for ras in rasters:
            if ras.endswith('pet.tif'):
                dt = datetime.strptime(ras[:10], '%Y-%m-%d')
                raster = os.path.join(self.grimet_raster_dir, ras)
                points = raster_point_extract(raster, self.agri_points, dt)

                for key, val in points.items():
                    lon, lat = val['coords']
                    _, var = ras.split('_')
                    var = var.replace('.tif', '')
                    gridmet = GridMet(var, date=dt, lat=lat, lon=lon)
                    gridmet_pet = gridmet.get_point_timeseries()
                    val[dt][1] = gridmet_pet.iloc[0, 0]
                for key, val in points.items():
                    self.assertEqual(val[dt][0], val[dt][1])
Example #12
0
    def test_agrimet_gridmet_etr(self):
        agrimet = Agrimet(station=self.fetch_site,
                          start_date=self.start,
                          end_date=self.end,
                          interval='daily')

        formed = agrimet.fetch_met_data()
        agri_etr = formed['ETRS'].values

        s, e = datetime.strptime(self.start, '%Y-%m-%d'), \
               datetime.strptime(self.end, '%Y-%m-%d')
        gridmet = GridMet('etr', start=s, end=e, lat=self.lat, lon=self.lon)
        gridmet_etr = gridmet.get_point_timeseries()
        gridmet_etr = gridmet_etr.values

        # plt.plot(gridmet_etr, label='gridmet')
        # plt.plot(agri_etr, label='agrimet')
        # plt.legend()
        # plt.show()
        # plt.close()
        ratio = agri_etr.sum() / gridmet_etr.sum()
        print('ratio: {}'.format(ratio))
Example #13
0
def correct_etr_mesonet_gridmet(start, end, lat, lon):
    s, e = datetime.strptime(start, '%Y-%m-%d'), \
           datetime.strptime(end, '%Y-%m-%d')
    gridmet = GridMet('etr', start=s, end=e, lat=lat, lon=lon)
    gridmet_etr = gridmet.get_point_timeseries()
    gridmet_etr = gridmet_etr.values

    mco = Mesonet(LOLO_MCO, start=start, end=end)
    mesonet_daily = mco.mesonet_etr(lat=46.3, elevation=1000.0)
    mesonet_etr = mesonet_daily['ETR'].values

    plt.plot(gridmet_etr[121:273], label='gridmet')
    plt.plot(mesonet_etr[121:273], label='mesonet')
    plt.xlabel('GROWING SEASON DAY (MAY 01 - SEP 30)')
    plt.ylabel('Tall Crop Reference ET (mm) daily')
    plt.legend()
    plt.show()

    ma_ratio = mesonet_etr[121:273].sum() / gridmet_etr[121:273].sum()
    print('mesonet - gridmet ratio: {}'.format(ma_ratio))
    ma_ratio = gridmet_etr[121:273].sum() / mesonet_etr[121:273].sum()
    print('gridmet - mesonet ratio: {}'.format(ma_ratio))
Example #14
0
 def get_gridmet(self, start, end, lat, lon):
     #  gridmet params
     gridmet = GridMet('pr', start=start, end=end, lat=lat, lon=lon)
     ts_ppt = gridmet.get_point_timeseries()
     m_ppt = ts_ppt.groupby(lambda x: x.month).sum().values
     gridmet = GridMet('etr', start=start, end=end, lat=lat, lon=lon)
     ts_etr = gridmet.get_point_timeseries()
     m_etr = ts_etr.groupby(lambda x: x.month).sum().values
     return m_ppt, m_etr
Example #15
0
    def test_elevation(self):

        l8 = Landsat8(self.dir_name_LC8)
        polygon = l8.get_tile_geometry()
        bounds = RasterBounds(affine_transform=l8.rasterio_geometry['transform'], profile=l8.rasterio_geometry)
        gridmet = GridMet('elev', date=self.date, bbox=bounds,
                          target_profile=l8.rasterio_geometry, clip_feature=polygon)
        gridmet.save_raster()
        gridmet.get_data_subset(os.path.join(self.grimet_raster_dir, 'elevation.tif'))
Example #16
0
    def get_monthly_gridmet(self):

        self.geometry, bounds, clip = self._get_landsat_image()
        assert self.geometry['crs'].data == self.project_crs

        days = monthrange(self.year, self.month)[1]
        s, e = datetime(self.year, self.month,
                        1), datetime(self.year, self.month, days)

        kwargs = dict(start=s,
                      end=e,
                      bbox=bounds,
                      clip_feature=clip,
                      target_profile=self.geometry)

        if self.variable == 'pr':
            self.gridmet = GridMet(self.variable, **kwargs)
            path = os.path.join(self.netcdf,
                                '{}_{}.nc'.format(self.variable, self.year))
            self.arr = self.gridmet.get_area_timeseries(file_url=path,
                                                        operation='sum')

        elif self.variable == 'temp':
            path = os.path.join(self.netcdf, 'tmmx_{}.nc'.format(self.year))
            self.gridmet = GridMet('tmmx', **kwargs)
            mean_max = self.gridmet.get_area_timeseries(file_url=path,
                                                        operation='mean')
            path = os.path.join(self.netcdf, 'tmmn_{}.nc'.format(self.year))
            self.gridmet = GridMet('tmmn', **kwargs)
            mean_min = self.gridmet.get_area_timeseries(file_url=path,
                                                        operation='mean')
            self.arr = mean([mean_max, mean_min], axis=0)

        elif self.variable == 'elev':
            self.gridmet = GridMet(self.variable, **kwargs)
            path = os.path.join(
                self.netcdf, 'metdata_elevationdata.nc'.format(self.variable))
            self.arr = self.gridmet.get_data_subset(file_url=path)

        else:
            raise NotImplementedError("choose from 'temp', 'pr', or 'elev'")

        arr = self._clip_to_catchment()

        return arr
Example #17
0
 def get_climate_timeseries(self):
     bounds, geometry = self._get_bounds()
     print(bounds, geometry)
     dates = self.scenes['DATE_ACQUIRED'].values
     all_dates = arange(datetime(self.year, 3, 1),
                        max(dates) + 1,
                        timedelta(days=1)).astype(datetime64)
     for target in self.climate_targets:
         out_arr = None
         first = True
         last = None
         check = [
             os.path.isfile(
                 os.path.join(self.root, 'climate_rasters',
                              '{}_{}.tif'.format(q, target))) for q in dates
         ]
         if False in check:
             for date in all_dates:
                 d = datetime.utcfromtimestamp(
                     date.tolist() / 1e9)  # convert to a nicer format.
                 bds = GeoBounds(wsen=bounds)
                 gm = GridMet(variable=target,
                              clip_feature=geometry,
                              bbox=bds,
                              target_profile=self.profile,
                              date=d)
                 out = gm.get_data_subset_nonconform()
                 if first:
                     out_arr = zeros(out.shape)
                     first = False
                 out_arr += out
                 if date in dates:
                     out_dir = 'climate_rasters'
                     out_dir = os.path.join(self.root, out_dir)
                     if not os.path.isdir(out_dir):
                         os.mkdir(out_dir)
                     outfile = os.path.join(
                         out_dir, '{}_{}.tif'.format(date, target))
                     print("Saving {}".format(outfile))
                     out_final = gm.conform(out_arr)
                     gm.save_raster(out_final,
                                    self.landsat.rasterio_geometry, outfile)
                     rmtree(gm.temp_dir)
Example #18
0
class CatchmetGridmet():
    def __init__(self, year, month, _id, variable='pr'):
        home = os.path.expanduser('~')
        self.netcdf = os.path.join(home, 'IrrigationGIS', 'lolo',
                                   'gridmet_ncdf')
        self.tif = os.path.join(home, 'IrrigationGIS', 'lolo', 'tif')
        self.landsat = os.path.join(home, 'IrrigationGIS', 'lolo',
                                    'LC80410282016158LGN01')
        self.catchments = os.path.join(
            home, 'IrrigationGIS', 'lolo', 'shp',
            'Lolo_WB_Model_Calibration_Catchments_32611.shp')
        self.project_crs = {'init': 'epsg:32611'}

        self.year = year
        self.month = month
        self.id = _id
        self.variable = variable
        self.tif_name = os.path.join(
            self.tif, 'F{}_{}_{}_{}.tif'.format(_id, variable, year, month))
        self.clip_name = os.path.join(
            self.tif, 'F{}_{}_{}_{}_clip.tif'.format(_id, variable, year,
                                                     month))
        self.catchment = self._get_feature()

        self.arr = None
        self.geometry = None
        self.gridmet = None

    def _get_feature(self):
        with fiona_open(self.catchments, 'r') as src:
            assert src.crs == self.project_crs
            for f in src:
                if f['properties']['Id'] == self.id:
                    catchment = Polygon(f['geometry']['coordinates'][0])
                    return catchment
            raise NotImplementedError()

    def _get_landsat_image(self):
        l8 = Landsat8(self.landsat)
        bounds = RasterBounds(
            affine_transform=l8.rasterio_geometry['transform'],
            profile=l8.rasterio_geometry)
        proj_bounds = bounds.to_epsg(32611)
        clip = proj_bounds.get_shapely_polygon()
        return l8.rasterio_geometry, bounds, clip

    def _clip_to_catchment(self):

        self.gridmet.save_raster(self.arr, self.geometry, self.tif_name)

        with raster_open(self.tif_name) as src:
            out_arr, out_trans = mask(src, [self.catchment],
                                      crop=True,
                                      all_touched=True)
            out_meta = src.meta.copy()
            out_meta.update({
                'driver': 'GTiff',
                'height': out_arr.shape[1],
                'width': out_arr.shape[2],
                'transform': out_trans
            })

        with raster_open(self.clip_name, 'w', **out_meta) as dst:
            dst.write(out_arr)

        return out_arr

    def get_monthly_gridmet(self):

        self.geometry, bounds, clip = self._get_landsat_image()
        assert self.geometry['crs'].data == self.project_crs

        days = monthrange(self.year, self.month)[1]
        s, e = datetime(self.year, self.month,
                        1), datetime(self.year, self.month, days)

        kwargs = dict(start=s,
                      end=e,
                      bbox=bounds,
                      clip_feature=clip,
                      target_profile=self.geometry)

        if self.variable == 'pr':
            self.gridmet = GridMet(self.variable, **kwargs)
            path = os.path.join(self.netcdf,
                                '{}_{}.nc'.format(self.variable, self.year))
            self.arr = self.gridmet.get_area_timeseries(file_url=path,
                                                        operation='sum')

        elif self.variable == 'temp':
            path = os.path.join(self.netcdf, 'tmmx_{}.nc'.format(self.year))
            self.gridmet = GridMet('tmmx', **kwargs)
            mean_max = self.gridmet.get_area_timeseries(file_url=path,
                                                        operation='mean')
            path = os.path.join(self.netcdf, 'tmmn_{}.nc'.format(self.year))
            self.gridmet = GridMet('tmmn', **kwargs)
            mean_min = self.gridmet.get_area_timeseries(file_url=path,
                                                        operation='mean')
            self.arr = mean([mean_max, mean_min], axis=0)

        elif self.variable == 'elev':
            self.gridmet = GridMet(self.variable, **kwargs)
            path = os.path.join(
                self.netcdf, 'metdata_elevationdata.nc'.format(self.variable))
            self.arr = self.gridmet.get_data_subset(file_url=path)

        else:
            raise NotImplementedError("choose from 'temp', 'pr', or 'elev'")

        arr = self._clip_to_catchment()

        return arr
Example #19
0
 def test_instantiate(self):
     """ Test instantiation of Thredds.Grimet object.
     :return: 
     """
     gridmet = GridMet(self.var, start=self.start, end=self.end)
     self.assertIsInstance(gridmet, GridMet)