def _normalize_data(self, obs, ret): obs_normalized = normalize(obs, self.normalization['obs'][0], self.normalization['obs'][1]) ret_normalized = normalize(ret, self.normalization['ret'][0], self.normalization['ret'][1]) return obs_normalized, ret_normalized
def _normalize_data(self, obs, act, obs_next=None): obs_normalized = normalize(obs, self.normalization['obs'][0], self.normalization['obs'][1]) actions_normalized = normalize(act, self.normalization['act'][0], self.normalization['act'][1]) if obs_next is not None: delta = obs_next - obs deltas_normalized = normalize(delta, self.normalization['delta'][0], self.normalization['delta'][1]) return obs_normalized, actions_normalized, deltas_normalized else: return obs_normalized, actions_normalized
def _normalize_data(self, obs, act, delta=None): assert len(obs) == len(act) == self.num_models assert self.normalization is not None norm_obses = [] norm_acts = [] norm_deltas = [] for i in range(self.num_models): norm_obs = normalize(obs[i], self.normalization[i]['obs'][0], self.normalization[i]['obs'][1]) norm_act = normalize(act[i], self.normalization[i]['act'][0], self.normalization[i]['act'][1]) norm_obses.append(norm_obs) norm_acts.append(norm_act) if delta is not None: assert len(delta) == self.num_models norm_delta = normalize(delta[i], self.normalization[i]['delta'][0], self.normalization[i]['delta'][1]) norm_deltas.append(norm_delta) if delta is not None: return norm_obses, norm_acts, norm_deltas return norm_obses, norm_acts