def train(self): """ Trains policy on env using algo Pseudocode: for itr in n_itr: for step in num_inner_grad_steps: sampler.sample() algo.compute_updated_dists() algo.optimize_policy() sampler.update_goals() """ start_time = time.time() rollout_time = 0 success_rate = 0 itrs_on_level = 0 for itr in range(self.start_itr, self.n_itr): # high_entropy = False # # At the very beginning of a new level, have high entropy # if itrs_on_level < 3: # high_entropy = True # # At the very beginning, have high entropy # if self.curriculum_step == 0 and itrs_on_level < 20: # high_entropy = True # # If the model never succeeds # if itrs_on_level > 20 and success_rate < .2: # high_entropy = True # logger.logkv("HighE", high_entropy) logger.logkv("ItrsOnLEvel", itrs_on_level) itrs_on_level += 1 itr_start_time = time.time() logger.log("\n ---------------- Iteration %d ----------------" % itr) logger.log("Sampling set of tasks/goals for this meta-batch...") """ -------------------- Sampling --------------------------""" logger.log("Obtaining samples...") time_env_sampling_start = time.time() samples_data, episode_logs = self.algo.collect_experiences(self.teacher_train_dict) assert len(samples_data.action.shape) == 1, (samples_data.action.shape) time_collection = time.time() - time_env_sampling_start time_training_start = time.time() # if high_entropy: # entropy = self.algo.entropy_coef# * 10 # else: # entropy = self.algo.entropy_coef summary_logs = self.algo.optimize_policy(samples_data, teacher_dict=self.teacher_train_dict) time_training = time.time() - time_training_start self._log(episode_logs, summary_logs, tag="Train") logger.logkv('Curriculum Step', self.curriculum_step) advance_curriculum = self.check_advance_curriculum(episode_logs, summary_logs) logger.logkv('Train/Advance', int(advance_curriculum)) time_env_sampling = time.time() - time_env_sampling_start # # """ ------------------ Reward Predictor Splicing ---------------------""" rp_start_time = time.time() # samples_data = self.use_reward_predictor(samples_data) # TODO: update rp_splice_time = time.time() - rp_start_time """ ------------------ End Reward Predictor Splicing ---------------------""" """ ------------------ Policy Update ---------------------""" logger.log("Optimizing policy...") # # This needs to take all samples_data so that it can construct graph for meta-optimization. time_rp_train_start = time.time() # self.train_rp(samples_data) time_rp_train = time.time() - time_rp_train_start """ ------------------ Distillation ---------------------""" if False: # TODO: remove False once I've checked things work with dictionaries # if self.supervised_model is not None and advance_curriculum: time_distill_start = time.time() for _ in range(3): # TODO: tune this! distill_log = self.distill(samples_data, is_training=True) for k, v in distill_log.items(): logger.logkv(f"Distill/{k}_Train", v) distill_time = time.time() - time_distill_start advance_curriculum = distill_log['Accuracy'] >= self.accuracy_threshold logger.logkv('Distill/Advance', int(advance_curriculum)) else: distill_time = 0 """ ------------------ Policy rollouts ---------------------""" run_policy_time = 0 if False: # TODO: remove False once I've checkeo things work with dictionaries # if advance_curriculum or (itr % self.eval_every == 0) or (itr == self.n_itr - 1): # TODO: collect rollouts with and without the teacher train_advance_curriculum = advance_curriculum with torch.no_grad(): if self.supervised_model is not None: # Distilled model time_run_supervised_start = time.time() self.sampler.supervised_model.reset(dones=[True] * len(samples_data.obs)) logger.log("Running supervised model") advance_curriculum_sup = self.run_supervised(self.il_trainer.acmodel, self.no_teacher_dict, "DRollout/") run_supervised_time = time.time() - time_run_supervised_start else: run_supervised_time = 0 advance_curriculum_sup = True # Original Policy time_run_policy_start = time.time() self.algo.acmodel.reset(dones=[True] * len(samples_data.obs)) logger.log("Running model with teacher") advance_curriculum_policy = self.run_supervised(self.algo.acmodel, self.teacher_train_dict, "Rollout/") run_policy_time = time.time() - time_run_policy_start advance_curriculum = advance_curriculum_policy and advance_curriculum_sup and train_advance_curriculum print("ADvancing curriculum???", advance_curriculum) logger.logkv('Advance', int(advance_curriculum)) else: run_supervised_time = 0 # advance_curriculum = False """ ------------------- Logging Stuff --------------------------""" logger.logkv('Itr', itr) logger.logkv('n_timesteps', self.sampler.total_timesteps_sampled) logger.logkv('Time/Total', time.time() - start_time) logger.logkv('Time/Itr', time.time() - itr_start_time) logger.logkv('Curriculum Percent', self.curriculum_step / len(self.env.levels_list)) process = psutil.Process(os.getpid()) memory_use = process.memory_info().rss / float(2 ** 20) logger.logkv('Memory MiB', memory_use) logger.log(self.exp_name) logger.logkv('Time/Sampling', time_env_sampling) logger.logkv('Time/Training', time_training) logger.logkv('Time/Collection', time_collection) logger.logkv('Time/RPUse', rp_splice_time) logger.logkv('Time/RPTrain', time_rp_train) logger.logkv('Time/RunwTeacher', run_policy_time) logger.logkv('Time/Distillation', distill_time) logger.logkv('Time/RunDistilled', run_supervised_time) logger.logkv('Time/VidRollout', rollout_time) logger.dumpkvs() """ ------------------ Video Saving ---------------------""" should_save_video = (itr % self.save_videos_every == 0) or (itr == self.n_itr - 1) or advance_curriculum if should_save_video: # TODO: consider generating videos with every element in the powerset of feedback types time_rollout_start = time.time() if self.supervised_model is not None: self.il_trainer.acmodel.reset(dones=[True]) self.save_videos(itr, self.il_trainer.acmodel, save_name='distilled_video_stoch', num_rollouts=5, teacher_dict=self.teacher_train_dict, save_video=should_save_video, log_prefix="DVidRollout/Stoch", stochastic=True) self.il_trainer.acmodel.reset(dones=[True]) self.save_videos(itr, self.il_trainer.acmodel, save_name='distilled_video_det', num_rollouts=5, teacher_dict=self.no_teacher_dict, save_video=should_save_video, log_prefix="DVidRollout/Det", stochastic=False) self.algo.acmodel.reset(dones=[True]) self.save_videos(self.curriculum_step, self.algo.acmodel, save_name='withTeacher_video_stoch', num_rollouts=5, teacher_dict=self.teacher_train_dict, save_video=should_save_video, log_prefix="VidRollout/Stoch", stochastic=True) self.algo.acmodel.reset(dones=[True]) self.save_videos(self.curriculum_step, self.algo.acmodel, save_name='withTeacher_video_det', num_rollouts=5, teacher_dict=self.no_teacher_dict, save_video=should_save_video, log_prefix="VidRollout/Det", stochastic=False) rollout_time = time.time() - time_rollout_start else: rollout_time = 0 params = self.get_itr_snapshot(itr) step = self.curriculum_step if self.log_and_save: if (itr % self.save_every == 0) or (itr == self.n_itr - 1) or advance_curriculum: logger.log("Saving snapshot...") logger.save_itr_params(itr, step, params) logger.log("Saved") if advance_curriculum and self.advance_levels: self.curriculum_step += 1 self.sampler.advance_curriculum() self.algo.advance_curriculum() # self.algo.set_optimizer() itrs_on_level = 0 logger.log("Training finished")
def train(self): """ Trains policy on env using algo Pseudocode: for itr in n_itr: for step in num_inner_grad_steps: sampler.sample() algo.compute_updated_dists() algo.optimize_policy() sampler.update_goals() """ with self.sess.as_default() as sess: # initialize uninitialized vars (only initialize vars that were not loaded) # uninit_vars = [var for var in tf.global_variables() if not sess.run(tf.is_variable_initialized(var))] # sess.run(tf.variables_initializer(uninit_vars)) sess.run(tf.global_variables_initializer()) start_time = time.time() for itr in range(self.start_itr, self.n_itr): itr_start_time = time.time() logger.log( "\n ---------------- Iteration %d ----------------" % itr) time_env_sampling_start = time.time() if itr == 0: logger.log( "Obtaining random samples from the environment...") self.env_sampler.total_samples *= self.num_rollouts_per_iter env_paths = self.env_sampler.obtain_samples( log=True, random=self.initial_random_samples, log_prefix='Data-EnvSampler-', verbose=True) self.env_sampler.total_samples /= self.num_rollouts_per_iter time_env_samp_proc = time.time() samples_data = self.dynamics_sample_processor.process_samples( env_paths, log=True, log_prefix='Data-EnvTrajs-') self.env.log_diagnostics(env_paths, prefix='Data-EnvTrajs-') logger.record_tabular('Data-TimeEnvSampleProc', time.time() - time_env_samp_proc) buffer = samples_data if self.sample_from_buffer else None ''' --------------- fit dynamics model --------------- ''' logger.log("Training dynamics model for %i epochs ..." % self.dynamics_model_max_epochs) time_fit_start = time.time() self.dynamics_model.fit(samples_data['observations'], samples_data['actions'], samples_data['next_observations'], epochs=self.dynamics_model_max_epochs, verbose=False, log_tabular=True, prefix='Model-') logger.record_tabular('Model-TimeModelFit', time.time() - time_fit_start) env_paths = [] for id_rollout in range(self.num_rollouts_per_iter): times_dyn_sampling = [] times_dyn_sample_processing = [] times_optimization = [] times_step = [] grad_steps_per_rollout = self.grad_steps_per_rollout for step in range(grad_steps_per_rollout): # logger.log("\n ---------------- Grad-Step %d ----------------" % int(grad_steps_per_rollout*itr*self.num_rollouts_per_iter, # + id_rollout * grad_steps_per_rollout + step)) step_start_time = time.time() """ -------------------- Sampling --------------------------""" logger.log("Obtaining samples from the model...") time_env_sampling_start = time.time() paths = self.model_sampler.obtain_samples( log=True, log_prefix='Policy-', buffer=buffer) sampling_time = time.time() - time_env_sampling_start """ ----------------- Processing Samples ---------------------""" logger.log("Processing samples from the model...") time_proc_samples_start = time.time() samples_data = self.model_sample_processor.process_samples( paths, log='all', log_prefix='Policy-') proc_samples_time = time.time( ) - time_proc_samples_start if type(paths) is list: self.log_diagnostics(paths, prefix='Policy-') else: self.log_diagnostics(sum(paths.values(), []), prefix='Policy-') """ ------------------ Policy Update ---------------------""" logger.log("Optimizing policy...") time_optimization_step_start = time.time() self.algo.optimize_policy(samples_data) optimization_time = time.time( ) - time_optimization_step_start times_dyn_sampling.append(sampling_time) times_dyn_sample_processing.append(proc_samples_time) times_optimization.append(optimization_time) times_step.append(time.time() - step_start_time) logger.log( "Obtaining random samples from the environment...") env_paths.extend( self.env_sampler.obtain_samples( log=True, log_prefix='Data-EnvSampler-', verbose=True)) logger.record_tabular('Data-TimeEnvSampling', time.time() - time_env_sampling_start) logger.log("Processing environment samples...") """ ------------------- Logging Stuff --------------------------""" logger.logkv('Iteration', itr) logger.logkv('n_timesteps', self.env_sampler.total_timesteps_sampled) logger.logkv('Policy-TimeSampleProc', np.sum(times_dyn_sample_processing)) logger.logkv('Policy-TimeSampling', np.sum(times_dyn_sampling)) logger.logkv('Policy-TimeAlgoOpt', np.sum(times_optimization)) logger.logkv('Policy-TimeStep', np.sum(times_step)) logger.logkv('Time', time.time() - start_time) logger.logkv('ItrTime', time.time() - itr_start_time) logger.log("Saving snapshot...") params = self.get_itr_snapshot(itr) logger.save_itr_params(itr, params) logger.log("Saved") logger.dumpkvs() if itr == 0: sess.graph.finalize() logger.logkv('Trainer-TimeTotal', time.time() - start_time) logger.log("Training finished") self.sess.close()
def train(self): """ Trains policy on env using algo Pseudocode: for itr in n_itr: for step in num_inner_grad_steps: sampler.sample() algo.compute_updated_dists() algo.optimize_policy() sampler.update_goals() """ with self.sess.as_default() as sess: # initialize uninitialized vars (only initialize vars that were not loaded) uninit_vars = [ var for var in tf.global_variables() if not sess.run(tf.is_variable_initialized(var)) ] sess.run(tf.variables_initializer(uninit_vars)) start_time = time.time() for itr in range(self.start_itr, self.n_itr): itr_start_time = time.time() logger.log( "\n ---------------- Iteration %d ----------------" % itr) time_env_sampling_start = time.time() logger.log( "Obtaining samples from the environment using the policy..." ) env_paths = self.sampler.obtain_samples(log=True, log_prefix='') logger.record_tabular('Time-EnvSampling', time.time() - time_env_sampling_start) logger.log("Processing environment samples...") # first processing just for logging purposes time_env_samp_proc = time.time() samples_data = self.sample_processor.process_samples( env_paths, log=True, log_prefix='EnvTrajs-') logger.record_tabular('Time-EnvSampleProc', time.time() - time_env_samp_proc) ''' --------------- fit dynamics model --------------- ''' time_fit_start = time.time() logger.log("Training dynamics model for %i epochs ..." % self.dynamics_model_max_epochs) self.dynamics_model.fit(samples_data['observations'], samples_data['actions'], samples_data['next_observations'], epochs=self.dynamics_model_max_epochs, verbose=False, log_tabular=True, early_stopping=True, compute_normalization=False) logger.log("Training the value function for %i epochs ..." % self.vfun_max_epochs) self.value_function.fit(samples_data['observations'], samples_data['returns'], epochs=self.vfun_max_epochs, verbose=False, log_tabular=True, compute_normalization=False) logger.log("Training the policy ...") self.algo.optimize_policy(samples_data) logger.record_tabular('Time-ModelFit', time.time() - time_fit_start) """ ------------------- Logging Stuff --------------------------""" logger.logkv('Itr', itr) logger.logkv('n_timesteps', self.sampler.total_timesteps_sampled) logger.logkv('Time', time.time() - start_time) logger.logkv('ItrTime', time.time() - itr_start_time) logger.log("Saving snapshot...") params = self.get_itr_snapshot(itr) self.log_diagnostics(env_paths, '') logger.save_itr_params(itr, params) logger.log("Saved") logger.dumpkvs() if itr == 0: sess.graph.finalize() logger.log("Training finished") self.sess.close()
def train(self): """ Trains policy on env using algo Pseudocode: for itr in n_itr: for step in num_inner_grad_steps: sampler.sample() algo.compute_updated_dists() algo.optimize_policy() sampler.update_goals() """ with self.sess.as_default() as sess: # initialize uninitialized vars (only initialize vars that were not loaded) # uninit_vars = [var for var in tf.global_variables() if not sess.run(tf.is_variable_initialized(var))] # sess.run(tf.variables_initializer(uninit_vars)) sess.run(tf.global_variables_initializer()) start_time = time.time() for itr in range(self.start_itr, self.n_itr): itr_start_time = time.time() logger.log( "\n ---------------- Iteration %d ----------------" % itr) time_env_sampling_start = time.time() if self.initial_random_samples and itr == 0: logger.log( "Obtaining random samples from the environment...") env_paths = self.env_sampler.obtain_samples( log=True, random=True, log_prefix='Data-EnvSampler-') else: logger.log( "Obtaining samples from the environment using the policy..." ) env_paths = self.env_sampler.obtain_samples( log=True, log_prefix='Data-EnvSampler-') # Add sleeping time to match parallel experiment # time.sleep(10) logger.record_tabular('Data-TimeEnvSampling', time.time() - time_env_sampling_start) logger.log("Processing environment samples...") # first processing just for logging purposes time_env_samp_proc = time.time() samples_data = self.dynamics_sample_processor.process_samples( env_paths, log=True, log_prefix='Data-EnvTrajs-') self.env.log_diagnostics(env_paths, prefix='Data-EnvTrajs-') logger.record_tabular('Data-TimeEnvSampleProc', time.time() - time_env_samp_proc) ''' --------------- fit dynamics model --------------- ''' time_fit_start = time.time() self.dynamics_model.update_buffer( samples_data['observations'], samples_data['actions'], samples_data['next_observations'], check_init=True) buffer = None if not self.sample_from_buffer else samples_data logger.record_tabular('Model-TimeModelFit', time.time() - time_fit_start) ''' --------------- MAML steps --------------- ''' times_dyn_sampling = [] times_dyn_sample_processing = [] times_optimization = [] times_step = [] remaining_model_idx = list( range(self.dynamics_model.num_models)) valid_loss_rolling_average_prev = None with_new_data = True for id_step in range(self.repeat_steps): for epoch in range(self.num_epochs_per_step): logger.log( "Training dynamics model for %i epochs ..." % 1) remaining_model_idx, valid_loss_rolling_average = self.dynamics_model.fit_one_epoch( remaining_model_idx, valid_loss_rolling_average_prev, with_new_data, log_tabular=True, prefix='Model-') with_new_data = False for step in range(self.num_grad_policy_per_step): logger.log( "\n ---------------- Grad-Step %d ----------------" % int(itr * self.repeat_steps * self.num_grad_policy_per_step + id_step * self.num_grad_policy_per_step + step)) step_start_time = time.time() """ -------------------- Sampling --------------------------""" logger.log("Obtaining samples from the model...") time_env_sampling_start = time.time() paths = self.model_sampler.obtain_samples( log=True, log_prefix='Policy-', buffer=buffer) sampling_time = time.time() - time_env_sampling_start """ ----------------- Processing Samples ---------------------""" logger.log("Processing samples from the model...") time_proc_samples_start = time.time() samples_data = self.model_sample_processor.process_samples( paths, log='all', log_prefix='Policy-') proc_samples_time = time.time( ) - time_proc_samples_start if type(paths) is list: self.log_diagnostics(paths, prefix='Policy-') else: self.log_diagnostics(sum(paths.values(), []), prefix='Policy-') """ ------------------ Policy Update ---------------------""" logger.log("Optimizing policy...") # This needs to take all samples_data so that it can construct graph for meta-optimization. time_optimization_step_start = time.time() self.algo.optimize_policy(samples_data) optimization_time = time.time( ) - time_optimization_step_start times_dyn_sampling.append(sampling_time) times_dyn_sample_processing.append(proc_samples_time) times_optimization.append(optimization_time) times_step.append(time.time() - step_start_time) """ ------------------- Logging Stuff --------------------------""" logger.logkv('Iteration', itr) logger.logkv('n_timesteps', self.env_sampler.total_timesteps_sampled) logger.logkv('Policy-TimeSampleProc', np.sum(times_dyn_sample_processing)) logger.logkv('Policy-TimeSampling', np.sum(times_dyn_sampling)) logger.logkv('Policy-TimeAlgoOpt', np.sum(times_optimization)) logger.logkv('Policy-TimeStep', np.sum(times_step)) logger.logkv('Time', time.time() - start_time) logger.logkv('ItrTime', time.time() - itr_start_time) logger.log("Saving snapshot...") params = self.get_itr_snapshot(itr) logger.save_itr_params(itr, params) logger.log("Saved") logger.dumpkvs() if itr == 0: sess.graph.finalize() logger.logkv('Trainer-TimeTotal', time.time() - start_time) logger.log("Training finished") self.sess.close()
def train(self): """ Trains policy on env using algo Pseudocode: for itr in n_itr: for step in num_inner_grad_steps: sampler.sample() algo.compute_updated_dists() algo.optimize_policy() sampler.update_goals() """ with self.sess.as_default() as sess: # initialize uninitialized vars (only initialize vars that were not loaded) # uninit_vars = [var for var in tf.global_variables() if not sess.run(tf.is_variable_initialized(var))] # sess.run(tf.variables_initializer(uninit_vars)) sess.run(tf.global_variables_initializer()) if type(self.meta_steps_per_iter) is tuple: meta_steps_per_iter = np.linspace(self.meta_steps_per_iter[0], self.meta_steps_per_iter[1], self.n_itr).astype(np.int) else: meta_steps_per_iter = [self.meta_steps_per_iter] * self.n_itr start_time = time.time() for itr in range(self.start_itr, self.n_itr): itr_start_time = time.time() logger.log( "\n ---------------- Iteration %d ----------------" % itr) time_env_sampling_start = time.time() if self.initial_random_samples and itr == 0: logger.log( "Obtaining random samples from the environment...") env_paths = self.env_sampler.obtain_samples( log=True, random=True, log_prefix='EnvSampler-') else: logger.log( "Obtaining samples from the environment using the policy..." ) env_paths = self.env_sampler.obtain_samples( log=True, log_prefix='EnvSampler-') logger.record_tabular('Time-EnvSampling', time.time() - time_env_sampling_start) logger.log("Processing environment samples...") # first processing just for logging purposes time_env_samp_proc = time.time() if type(env_paths) is dict or type( env_paths) is collections.OrderedDict: env_paths = list(env_paths.values()) idxs = np.random.choice(range(len(env_paths)), size=self.num_rollouts_per_iter, replace=False) env_paths = sum([env_paths[idx] for idx in idxs], []) elif type(env_paths) is list: idxs = np.random.choice(range(len(env_paths)), size=self.num_rollouts_per_iter, replace=False) env_paths = [env_paths[idx] for idx in idxs] else: raise TypeError samples_data = self.dynamics_sample_processor.process_samples( env_paths, log=True, log_prefix='EnvTrajs-') self.env.log_diagnostics(env_paths, prefix='EnvTrajs-') logger.record_tabular('Time-EnvSampleProc', time.time() - time_env_samp_proc) logger.record_tabular('Time-Data', time.time() - time_env_sampling_start) ''' --------------- fit dynamics model --------------- ''' time_fit_start = time.time() logger.log("Training dynamics model for %i epochs ..." % (self.dynamics_model_max_epochs)) self.dynamics_model.fit(samples_data['observations'], samples_data['actions'], samples_data['next_observations'], epochs=self.dynamics_model_max_epochs, verbose=True, log_tabular=True) buffer = None if not self.sample_from_buffer else samples_data logger.record_tabular('Time-ModelFit', time.time() - time_fit_start) ''' ------------ log real performance --------------- ''' if self.log_real_performance: logger.log("Evaluating the performance of the real policy") self.policy.switch_to_pre_update() env_paths = self.env_sampler.obtain_samples( log=True, log_prefix='PrePolicy-') samples_data = self.model_sample_processor.process_samples( env_paths, log='all', log_prefix='PrePolicy-') self.algo._adapt(samples_data) env_paths = self.env_sampler.obtain_samples( log=True, log_prefix='PostPolicy-') self.model_sample_processor.process_samples( env_paths, log='all', log_prefix='PostPolicy-') ''' --------------- MAML steps --------------- ''' times_dyn_sampling = [] times_dyn_sample_processing = [] times_meta_sampling = [] times_inner_step = [] times_total_inner_step = [] times_outer_step = [] times_maml_steps = [] for meta_itr in range(meta_steps_per_iter[itr]): logger.log( "\n ---------------- Meta-Step %d ----------------" % int(sum(meta_steps_per_iter[:itr]) + meta_itr)) self.policy.switch_to_pre_update( ) # Switch to pre-update policy all_samples_data, all_paths = [], [] list_sampling_time, list_inner_step_time, list_outer_step_time, list_proc_samples_time = [], [], [], [] time_maml_steps_start = time.time() start_total_inner_time = time.time() for step in range(self.num_inner_grad_steps + 1): logger.log("\n ** Adaptation-Step %d **" % step) """ -------------------- Sampling --------------------------""" logger.log("Obtaining samples...") time_env_sampling_start = time.time() paths = self.model_sampler.obtain_samples( log=True, log_prefix='Step_%d-' % step, buffer=buffer) list_sampling_time.append(time.time() - time_env_sampling_start) all_paths.append(paths) """ ----------------- Processing Samples ---------------------""" logger.log("Processing samples...") time_proc_samples_start = time.time() samples_data = self.model_sample_processor.process_samples( paths, log='all', log_prefix='Step_%d-' % step) all_samples_data.append(samples_data) list_proc_samples_time.append(time.time() - time_proc_samples_start) self.log_diagnostics(sum(list(paths.values()), []), prefix='Step_%d-' % step) """ ------------------- Inner Policy Update --------------------""" time_inner_step_start = time.time() if step < self.num_inner_grad_steps: logger.log("Computing inner policy updates...") self.algo._adapt(samples_data) list_inner_step_time.append(time.time() - time_inner_step_start) total_inner_time = time.time() - start_total_inner_time time_maml_opt_start = time.time() """ ------------------ Outer Policy Update ---------------------""" logger.log("Optimizing policy...") # This needs to take all samples_data so that it can construct graph for meta-optimization. time_outer_step_start = time.time() self.algo.optimize_policy(all_samples_data) times_inner_step.append(list_inner_step_time) times_total_inner_step.append(total_inner_time) times_outer_step.append(time.time() - time_outer_step_start) times_meta_sampling.append(np.sum(list_sampling_time)) times_dyn_sampling.append(list_sampling_time) times_dyn_sample_processing.append(list_proc_samples_time) times_maml_steps.append(time.time() - time_maml_steps_start) """ ------------------- Logging Stuff --------------------------""" logger.logkv('Itr', itr) if self.log_real_performance: logger.logkv( 'n_timesteps', self.env_sampler.total_timesteps_sampled / (3 * self.policy.meta_batch_size) * self.num_rollouts_per_iter) else: logger.logkv( 'n_timesteps', self.env_sampler.total_timesteps_sampled / self.policy.meta_batch_size * self.num_rollouts_per_iter) logger.logkv('AvgTime-OuterStep', np.mean(times_outer_step)) logger.logkv('AvgTime-InnerStep', np.mean(times_inner_step)) logger.logkv('AvgTime-TotalInner', np.mean(times_total_inner_step)) logger.logkv('AvgTime-InnerStep', np.mean(times_inner_step)) logger.logkv('AvgTime-SampleProc', np.mean(times_dyn_sample_processing)) logger.logkv('AvgTime-Sampling', np.mean(times_dyn_sampling)) logger.logkv('AvgTime-MAMLSteps', np.mean(times_maml_steps)) logger.logkv('Time', time.time() - start_time) logger.logkv('ItrTime', time.time() - itr_start_time) logger.log("Saving snapshot...") params = self.get_itr_snapshot(itr) logger.save_itr_params(itr, params) logger.log("Saved") logger.dumpkvs() if itr == 0: sess.graph.finalize() logger.log("Training finished") self.sess.close()
def train(self): """ Trains policy on env using algo Pseudocode: for itr in n_itr: for step in num_inner_grad_steps: sampler.sample() algo.compute_updated_dists() algo.optimize_policy() sampler.update_goals() """ with self.sess.as_default() as sess: # initialize uninitialized vars (only initialize vars that were not loaded) uninit_vars = [ var for var in tf.global_variables() if not sess.run(tf.is_variable_initialized(var)) ] sess.run(tf.variables_initializer(uninit_vars)) start_time = time.time() for itr in range(self.start_itr, self.n_itr): self.sampler.update_tasks() itr_start_time = time.time() logger.log( "\n ---------------- Iteration %d ----------------" % itr) logger.log( "Sampling set of tasks/goals for this meta-batch...") """ -------------------- Sampling --------------------------""" logger.log("Obtaining samples...") time_env_sampling_start = time.time() paths = self.sampler.obtain_samples(log=True, log_prefix='train-') sampling_time = time.time() - time_env_sampling_start """ ----------------- Processing Samples ---------------------""" logger.log("Processing samples...") time_proc_samples_start = time.time() samples_data = self.sample_processor.process_samples( paths, log='all', log_prefix='train-') proc_samples_time = time.time() - time_proc_samples_start if type(paths) is list: self.log_diagnostics(paths, prefix='train-') else: self.log_diagnostics(sum(paths.values(), []), prefix='train-') """ ------------------ Policy Update ---------------------""" logger.log("Optimizing policy...") # This needs to take all samples_data so that it can construct graph for meta-optimization. time_optimization_step_start = time.time() self.algo.optimize_policy(samples_data) """ ------------------- Logging Stuff --------------------------""" logger.logkv('Itr', itr) logger.logkv('n_timesteps', self.sampler.total_timesteps_sampled) logger.logkv('Time-Optimization', time.time() - time_optimization_step_start) logger.logkv('Time-SampleProc', np.sum(proc_samples_time)) logger.logkv('Time-Sampling', sampling_time) logger.logkv('Time', time.time() - start_time) logger.logkv('ItrTime', time.time() - itr_start_time) logger.log("Saving snapshot...") params = self.get_itr_snapshot(itr) logger.save_itr_params(itr, params) logger.log("Saved") logger.dumpkvs() if itr == 0: sess.graph.finalize() logger.log("Training finished") self.sess.close()
def train(self): """ Trains policy on env using algo Pseudocode: for itr in n_itr: for step in num_inner_grad_steps: sampler.sample() algo.compute_updated_dists() algo.optimize_policy() sampler.update_goals() """ with self.sess.as_default() as sess: # initialize uninitialized vars (only initialize vars that were not loaded) uninit_vars = [ var for var in tf.global_variables() if not sess.run(tf.is_variable_initialized(var)) ] sess.run(tf.variables_initializer(uninit_vars)) start_time = time.time() for itr in range(self.start_itr, self.n_itr): itr_start_time = time.time() logger.log( "\n ---------------- Iteration %d ----------------" % itr) logger.log( "Sampling set of tasks/goals for this meta-batch...") self.sampler.update_tasks() self.policy.switch_to_pre_update( ) # Switch to pre-update policy all_samples_data, all_paths = [], [] list_sampling_time, list_inner_step_time, list_outer_step_time, list_proc_samples_time = [], [], [], [] start_total_inner_time = time.time() for step in range(self.num_inner_grad_steps + 1): logger.log('** Step ' + str(step) + ' **') """ -------------------- Sampling --------------------------""" logger.log("Obtaining samples...") time_env_sampling_start = time.time() paths = self.sampler.obtain_samples(log=True, log_prefix='Step_%d-' % step) list_sampling_time.append(time.time() - time_env_sampling_start) all_paths.append(paths) """ ----------------- Processing Samples ---------------------""" logger.log("Processing samples...") time_proc_samples_start = time.time() samples_data = self.sample_processor.process_samples( paths, log='all', log_prefix='Step_%d-' % step) all_samples_data.append(samples_data) list_proc_samples_time.append(time.time() - time_proc_samples_start) self.log_diagnostics(sum(list(paths.values()), []), prefix='Step_%d-' % step) """ ------------------- Inner Policy Update --------------------""" time_inner_step_start = time.time() if step < self.num_inner_grad_steps: logger.log("Computing inner policy updates...") self.algo._adapt(samples_data) # train_writer = tf.summary.FileWriter('/home/ignasi/Desktop/maml_zoo_graph', # sess.graph) list_inner_step_time.append(time.time() - time_inner_step_start) total_inner_time = time.time() - start_total_inner_time time_maml_opt_start = time.time() """ ------------------ Outer Policy Update ---------------------""" logger.log("Optimizing policy...") # This needs to take all samples_data so that it can construct graph for meta-optimization. time_outer_step_start = time.time() self.algo.optimize_policy(all_samples_data) """ ------------------- Logging Stuff --------------------------""" logger.logkv('Itr', itr) logger.logkv('n_timesteps', self.sampler.total_timesteps_sampled) logger.logkv('Time-OuterStep', time.time() - time_outer_step_start) logger.logkv('Time-TotalInner', total_inner_time) logger.logkv('Time-InnerStep', np.sum(list_inner_step_time)) logger.logkv('Time-SampleProc', np.sum(list_proc_samples_time)) logger.logkv('Time-Sampling', np.sum(list_sampling_time)) logger.logkv('Time', time.time() - start_time) logger.logkv('ItrTime', time.time() - itr_start_time) logger.logkv('Time-MAMLSteps', time.time() - time_maml_opt_start) logger.log("Saving snapshot...") params = self.get_itr_snapshot(itr) logger.save_itr_params(itr, params) logger.log("Saved") logger.dumpkvs() if itr == 0: sess.graph.finalize() logger.log("Training finished") self.sess.close()
def train(self): """ Trains policy on env using algo Pseudocode: for itr in n_itr: for step in num_inner_grad_steps: sampler.sample() algo.compute_updated_dists() algo.optimize_policy() sampler.update_goals() """ with self.sess.as_default() as sess: # initialize uninitialized vars (only initialize vars that were not loaded) uninit_vars = [ var for var in tf.global_variables() if not sess.run(tf.is_variable_initialized(var)) ] sess.run(tf.variables_initializer(uninit_vars)) if type(self.steps_per_iter) is tuple: steps_per_iter = np.linspace(self.steps_per_iter[0], self.steps_per_iter[1], self.n_itr).astype(np.int) else: steps_per_iter = [self.steps_per_iter] * self.n_itr start_time = time.time() for itr in range(self.start_itr, self.n_itr): itr_start_time = time.time() logger.log( "\n ---------------- Iteration %d ----------------" % itr) time_env_sampling_start = time.time() if self.initial_random_samples and itr == 0: logger.log( "Obtaining random samples from the environment...") env_paths = self.env_sampler.obtain_samples( log=True, random=True, log_prefix='EnvSampler-') else: logger.log( "Obtaining samples from the environment using the policy..." ) env_paths = self.env_sampler.obtain_samples( log=True, log_prefix='EnvSampler-') self.policy.obs_filter.stats_increment() logger.record_tabular('Time-EnvSampling', time.time() - time_env_sampling_start) logger.log("Processing environment samples...") # first processing just for logging purposes time_env_samp_proc = time.time() samples_data = self.dynamics_sample_processor.process_samples( env_paths, log=True, log_prefix='EnvTrajs-') self.env.log_diagnostics(env_paths, prefix='EnvTrajs-') logger.record_tabular('Time-EnvSampleProc', time.time() - time_env_samp_proc) ''' --------------- fit dynamics model --------------- ''' time_fit_start = time.time() logger.log("Training dynamics model for %i epochs ..." % self.dynamics_model_max_epochs) if self.dynamics_model is not None: self.dynamics_model.fit( samples_data['observations'], samples_data['actions'], samples_data['next_observations'], epochs=self.dynamics_model_max_epochs, verbose=False, log_tabular=True, compute_normalization=True) buffer = None if not self.sample_from_buffer else samples_data logger.record_tabular('Time-ModelFit', time.time() - time_fit_start) # returns = np.mean(samples_data['returns']) # if returns < self._last_returns: # self.policy.set_params(self._prev_policy) # self._last_returns = returns # self._prev_policy = self.policy.get_params() ''' ------------ log real performance --------------- ''' # if self.log_real_performance: # logger.log("Evaluating the performance of the real policy") # env_paths = self.env_sampler.obtain_samples(log=True, log_prefix='RealPolicy-') # _ = self.model_sample_processor.process_samples(env_paths, log='all', log_prefix='PrePolicy-') ''' --------------- RS steps --------------- ''' times_dyn_sampling = [] times_dyn_sample_processing = [] times_itr = [] times_rs_steps = [] list_sampling_time = [] list_proc_samples_time = [] for rs_itr in range(steps_per_iter[itr]): time_itr_start = time.time() logger.log("\n -------------- RS-Step %d --------------" % int(sum(steps_per_iter[:itr]) + rs_itr)) deltas = self.policy.get_deltas(self.num_deltas) self.policy.set_deltas(deltas, delta_std=self.delta_std, symmetrical=True) """ -------------------- Sampling --------------------------""" logger.log("Obtaining samples...") time_env_sampling_start = time.time() samples_data = self.model_sampler.obtain_samples( log=True, log_prefix='Models-', buffer=buffer) list_sampling_time.append(time.time() - time_env_sampling_start) """ ---------------------- Processing --------------------- """ # TODO: Add preprocessing of the state to see what sort of update rule between the models we want samples_data = self.ars_sample_processor.process_samples( samples_data, log=True, log_prefix='step%d-' % rs_itr) if self.dynamics_model is None: self.policy.stats_increment() """ ------------------ Outer Policy Update ---------------------""" logger.log("Optimizing policy...") # This needs to take all samples_data so that it can construct graph for meta-optimization. time_rs_start = time.time() self.algo.optimize_policy(samples_data['returns'], deltas) times_dyn_sampling.append(list_sampling_time) times_dyn_sample_processing.append(list_proc_samples_time) times_rs_steps.append(time.time() - time_rs_start) times_itr.append(time.time() - time_itr_start) """ ------------------- Logging Stuff --------------------------""" logger.logkv('Itr', itr) if self.dynamics_model is None: logger.logkv('n_timesteps', self.model_sampler.total_timesteps_sampled) else: logger.logkv('n_timesteps', self.env_sampler.total_timesteps_sampled) logger.logkv('AvgTime-RS', np.mean(times_rs_steps)) logger.logkv('AvgTime-SampleProc', np.mean(times_dyn_sample_processing)) logger.logkv('AvgTime-Sampling', np.mean(times_dyn_sampling)) logger.logkv('AvgTime-ModelItr', np.mean(times_itr)) logger.logkv('Time', time.time() - start_time) logger.logkv('ItrTime', time.time() - itr_start_time) logger.log("Saving snapshot...") params = self.get_itr_snapshot(itr) logger.save_itr_params(itr, params) logger.log("Saved") logger.dumpkvs() if itr == 0: sess.graph.finalize() logger.log("Training finished") self.sess.close()
def train(self): """ Trains policy on env using algo Pseudocode: for itr in n_itr: for step in num_inner_grad_steps: sampler.sample() algo.compute_updated_dists() algo.optimize_policy() sampler.update_goals() """ with self.sess.as_default() as sess: # initialize uninitialized vars (only initialize vars that were not loaded) uninit_vars = [ var for var in tf.global_variables() if not sess.run(tf.is_variable_initialized(var)) ] sess.run(tf.variables_initializer(uninit_vars)) start_time = time.time() if self.start_itr == 0: self.algo._update_target(tau=1.0) if self.n_initial_exploration_steps > 0: while self.replay_buffer._size < self.n_initial_exploration_steps: paths = self.sampler.obtain_samples( log=True, log_prefix='train-', random=True) samples_data = self.sample_processor.process_samples( paths, log='all', log_prefix='train-') sample_num = samples_data['observations'].shape[0] for i in range(sample_num): self.replay_buffer.add_sample( samples_data['observations'][i], samples_data['actions'][i], samples_data['rewards'][i], samples_data['dones'][i], samples_data['next_observations'][i], ) for itr in range(self.start_itr, self.n_itr): itr_start_time = time.time() logger.log( "\n ---------------- Iteration %d ----------------" % itr) logger.log( "Sampling set of tasks/goals for this meta-batch...") """ -------------------- Sampling --------------------------""" logger.log("Obtaining samples...") time_env_sampling_start = time.time() paths = self.sampler.obtain_samples(log=True, log_prefix='train-') sampling_time = time.time() - time_env_sampling_start """ ----------------- Processing Samples ---------------------""" # check how the samples are processed logger.log("Processing samples...") time_proc_samples_start = time.time() samples_data = self.sample_processor.process_samples( paths, log='all', log_prefix='train-') sample_num = samples_data['observations'].shape[0] for i in range(sample_num): self.replay_buffer.add_sample( samples_data['observations'][i], samples_data['actions'][i], samples_data['rewards'][i], samples_data['dones'][i], samples_data['next_observations'][i]) proc_samples_time = time.time() - time_proc_samples_start paths = self.sampler.obtain_samples(log=True, log_prefix='eval-', deterministic=True) _ = self.sample_processor.process_samples(paths, log='all', log_prefix='eval-') self.log_diagnostics(paths, prefix='train-') """ ------------------ Policy Update ---------------------""" logger.log("Optimizing policy...") time_optimization_step_start = time.time() self.algo.optimize_policy(self.replay_buffer, itr - self.start_itr, self.num_grad_steps) """ ------------------- Logging Stuff --------------------------""" logger.logkv('Itr', itr) logger.logkv('n_timesteps', self.sampler.total_timesteps_sampled) logger.logkv('Time-Optimization', time.time() - time_optimization_step_start) logger.logkv('Time-SampleProc', np.sum(proc_samples_time)) logger.logkv('Time-Sampling', sampling_time) logger.logkv('Time', time.time() - start_time) logger.logkv('ItrTime', time.time() - itr_start_time) logger.log("Saving snapshot...") params = self.get_itr_snapshot(itr) logger.save_itr_params(itr, params) logger.log("Saved") logger.dumpkvs() if itr == 0: sess.graph.finalize() logger.log("Training finished") self.sess.close()