Example #1
0
  def generate_embedded_testbench(self, tc_list, io_map, input_signals, output_signals, time_step, test_fname="test.input"):
    """ Generate testbench with embedded input and output data """
    self_component = self.implementation.get_component_object()
    self_instance = self_component(io_map = io_map, tag = "tested_entity")
    test_statement = Statement()

    for index, (input_values, output_values) in enumerate(tc_list):
      test_statement.add(
          self.implement_test_case(io_map, input_values, output_signals, output_values, time_step, index=index)
      )

    reset_statement = self.get_reset_statement(io_map, time_step)

    testbench = CodeEntity("testbench")
    test_process = Process(
      reset_statement,
      test_statement,
      # end of test
      Assert(
        Constant(0, precision = ML_Bool),
        " \"end of test, no error encountered \"",
        severity = Assert.Warning
      ),
      # infinite end loop
        WhileLoop(
            Constant(1, precision=ML_Bool),
            Statement(
                Wait(time_step * (self.stage_num + 2)),
            )
        )
    )

    testbench_scheme = Statement(
      self_instance,
      test_process
    )

    if self.pipelined:
        half_time_step = time_step / 2
        assert (half_time_step * 2) == time_step
        # adding clock process for pipelined bench
        clk_process = Process(
            Statement(
                ReferenceAssign(
                    io_map["clk"],
                    Constant(1, precision = ML_StdLogic)
                ),
                Wait(half_time_step),
                ReferenceAssign(
                    io_map["clk"],
                    Constant(0, precision = ML_StdLogic)
                ),
                Wait(half_time_step),
            )
        )
        testbench_scheme.push(clk_process)

    testbench.add_process(testbench_scheme)

    return [testbench]
Example #2
0
    def generate_auto_test(self,
                           test_num=10,
                           test_range=Interval(-1.0, 1.0),
                           debug=False,
                           time_step=10):
        """ time_step: duration of a stage (in ns) """
        # instanciating tested component
        # map of input_tag -> input_signal and output_tag -> output_signal
        io_map = {}
        # map of input_tag -> input_signal, excludind commodity signals
        # (e.g. clock and reset)
        input_signals = {}
        # map of output_tag -> output_signal
        output_signals = {}
        # excluding clock and reset signals from argument list
        # reduced_arg_list = [input_port for input_port in self.implementation.get_arg_list() if not input_port.get_tag() in ["clk", "reset"]]
        reduced_arg_list = self.implementation.get_arg_list()
        for input_port in reduced_arg_list:
            input_tag = input_port.get_tag()
            input_signal = Signal(input_tag + "_i",
                                  precision=input_port.get_precision(),
                                  var_type=Signal.Local)
            io_map[input_tag] = input_signal
            if not input_tag in ["clk", "reset"]:
                input_signals[input_tag] = input_signal
        for output_port in self.implementation.get_output_port():
            output_tag = output_port.get_tag()
            output_signal = Signal(output_tag + "_o",
                                   precision=output_port.get_precision(),
                                   var_type=Signal.Local)
            io_map[output_tag] = output_signal
            output_signals[output_tag] = output_signal

        # building list of test cases
        tc_list = []

        self_component = self.implementation.get_component_object()
        self_instance = self_component(io_map=io_map, tag="tested_entity")
        test_statement = Statement()

        # initializing random test case generator
        self.init_test_generator()

        # Appending standard test cases if required
        if self.auto_test_std:
            tc_list += self.standard_test_cases

        for i in range(test_num):
            input_values = self.generate_test_case(input_signals, io_map, i,
                                                   test_range)
            tc_list.append((input_values, None))

        def compute_results(tc):
            """ update test case with output values if required """
            input_values, output_values = tc
            if output_values is None:
                return input_values, self.numeric_emulate(input_values)
            else:
                return tc

        # filling output values
        tc_list = [compute_results(tc) for tc in tc_list]

        for input_values, output_values in tc_list:
            test_statement.add(
                self.implement_test_case(io_map, input_values, output_signals,
                                         output_values, time_step))

        testbench = CodeEntity("testbench")
        test_process = Process(
            test_statement,
            # end of test
            Assert(Constant(0, precision=ML_Bool),
                   " \"end of test, no error encountered \"",
                   severity=Assert.Failure))

        testbench_scheme = Statement(self_instance, test_process)

        if self.pipelined:
            half_time_step = time_step / 2
            assert (half_time_step * 2) == time_step
            # adding clock process for pipelined bench
            clk_process = Process(
                Statement(
                    ReferenceAssign(io_map["clk"],
                                    Constant(1, precision=ML_StdLogic)),
                    Wait(half_time_step),
                    ReferenceAssign(io_map["clk"],
                                    Constant(0, precision=ML_StdLogic)),
                    Wait(half_time_step),
                ))
            testbench_scheme.push(clk_process)

        testbench.add_process(testbench_scheme)

        return [testbench]
Example #3
0
    def __init__(
            self,
            # Naming
            base_name=ArgDefault("unknown_entity", 2),
            entity_name=ArgDefault(None, 2),
            output_file=ArgDefault(None, 2),
            # Specification
            io_precisions=ArgDefault([ML_Binary32], 2),
            abs_accuracy=ArgDefault(None, 2),
            libm_compliant=ArgDefault(True, 2),
            # Optimization parameters
            backend=ArgDefault(VHDLBackend(), 2),
            fast_path_extract=ArgDefault(True, 2),
            # Debug verbosity
            debug_flag=ArgDefault(False, 2),
            language=ArgDefault(VHDL_Code, 2),
            arg_template=DefaultEntityArgTemplate):
        # selecting argument values among defaults
        base_name = ArgDefault.select_value([base_name])
        Log.report(
            Log.Info, "pre entity_name: %s %s " %
            (entity_name, arg_template.entity_name))
        entity_name = ArgDefault.select_value(
            [arg_template.entity_name, entity_name])
        Log.report(Log.Info, "entity_name: %s " % entity_name)
        Log.report(
            Log.Info,
            "output_file: %s %s " % (arg_template.output_file, output_file))
        Log.report(Log.Info, "debug_file:  %s " % arg_template.debug_file)
        output_file = ArgDefault.select_value(
            [arg_template.output_file, output_file])
        debug_file = arg_template.debug_file
        # Specification
        io_precisions = ArgDefault.select_value([io_precisions])
        abs_accuracy = ArgDefault.select_value([abs_accuracy])
        # Optimization parameters
        backend = ArgDefault.select_value([arg_template.backend, backend])
        fast_path_extract = ArgDefault.select_value(
            [arg_template.fast_path_extract, fast_path_extract])
        # Debug verbosity
        debug_flag = ArgDefault.select_value([arg_template.debug, debug_flag])
        language = ArgDefault.select_value([arg_template.language, language])
        auto_test = arg_template.auto_test
        auto_test_std = arg_template.auto_test_std

        self.precision = arg_template.precision
        self.pipelined = arg_template.pipelined

        # io_precisions must be a list
        #     -> with a single element
        # XOR -> with as many elements as function arity (input + output arities)
        self.io_precisions = io_precisions

        ## enable the generation of numeric/functionnal auto-test
        self.auto_test_enable = (auto_test != False or auto_test_std != False)
        self.auto_test_number = auto_test
        self.auto_test_range = arg_template.auto_test_range
        self.auto_test_std = auto_test_std

        # enable/disable automatic exit once functional test is finished
        self.exit_after_test = arg_template.exit_after_test

        # enable post-generation RTL elaboration
        self.build_enable = arg_template.build_enable
        # enable post-elaboration simulation
        self.execute_trigger = arg_template.execute_trigger

        self.language = language

        # Naming logic, using provided information if available, otherwise deriving from base_name
        # base_name is e.g. exp
        # entity_name is e.g. expf or expd or whatever
        self.entity_name = entity_name if entity_name else generic_naming(
            base_name, self.io_precisions)

        self.output_file = output_file if output_file else self.entity_name + ".vhd"
        self.debug_file = debug_file if debug_file else "{}_dbg.do".format(
            self.entity_name)

        # debug version
        self.debug_flag = debug_flag
        # debug display
        self.display_after_gen = arg_template.display_after_gen
        self.display_after_opt = arg_template.display_after_opt

        # TODO: FIX which i/o precision to select
        # TODO: incompatible with fixed-point formats
        # self.sollya_precision = self.get_output_precision().get_sollya_object()

        self.abs_accuracy = abs_accuracy if abs_accuracy else S2**(
            -self.get_output_precision().get_precision())

        # target selection
        self.backend = backend

        # register control
        self.reset_pipeline = arg_template.reset_pipeline
        self.recirculate_pipeline = arg_template.recirculate_pipeline

        # optimization parameters
        self.fast_path_extract = fast_path_extract

        self.implementation = CodeEntity(self.entity_name)

        self.vhdl_code_generator = VHDLCodeGenerator(
            self.backend,
            declare_cst=False,
            disable_debug=not self.debug_flag,
            language=self.language)
        uniquifier = self.entity_name
        self.main_code_object = NestedCode(self.vhdl_code_generator,
                                           static_cst=False,
                                           uniquifier="{0}_".format(
                                               self.entity_name),
                                           code_ctor=VHDLCodeObject)
        if self.debug_flag:
            self.debug_code_object = CodeObject(self.language)
            self.debug_code_object << debug_utils_lib
            self.vhdl_code_generator.set_debug_code_object(
                self.debug_code_object)

        # pass scheduler instanciation
        self.pass_scheduler = PassScheduler()
        # recursive pass dependency
        pass_dep = PassDependency()
        for pass_uplet in arg_template.passes:
            pass_slot_tag, pass_tag = pass_uplet.split(":")
            pass_slot = PassScheduler.get_tag_class(pass_slot_tag)
            pass_class = Pass.get_pass_by_tag(pass_tag)
            pass_object = pass_class(self.backend)
            self.pass_scheduler.register_pass(pass_object,
                                              pass_dep=pass_dep,
                                              pass_slot=pass_slot)
            # linearly linking pass in the order they appear
            pass_dep = AfterPassById(pass_object.get_pass_id())

        # TODO/FIXME: can be overloaded
        if self.reset_pipeline:
            self.reset_signal = self.implementation.add_input_signal(
                "reset", ML_StdLogic)
        self.recirculate_signal_map = {}
Example #4
0
class ML_EntityBasis(object):
    name = "entity_basis"

    ## constructor
    #  @param base_name string function name (without precision considerations)
    #  @param function_name
    #  @param output_file string name of source code output file
    #  @param debug_file string name of debug script output file
    #  @param io_precisions input/output ML_Format list
    #  @param abs_accuracy absolute accuracy
    #  @param libm_compliant boolean flag indicating whether or not the function
    #                        should be compliant with standard libm specification
    #                        (wrt exception, error ...)
    #  @param fast_path_extract boolean flag indicating whether or not fast
    #                           path extraction optimization must be applied
    #  @param debug_flag boolean flag, indicating whether or not debug code
    #                    must be generated
    def __init__(
            self,
            # Naming
            base_name=ArgDefault("unknown_entity", 2),
            entity_name=ArgDefault(None, 2),
            output_file=ArgDefault(None, 2),
            # Specification
            io_precisions=ArgDefault([ML_Binary32], 2),
            abs_accuracy=ArgDefault(None, 2),
            libm_compliant=ArgDefault(True, 2),
            # Optimization parameters
            backend=ArgDefault(VHDLBackend(), 2),
            fast_path_extract=ArgDefault(True, 2),
            # Debug verbosity
            debug_flag=ArgDefault(False, 2),
            language=ArgDefault(VHDL_Code, 2),
            arg_template=DefaultEntityArgTemplate):
        # selecting argument values among defaults
        base_name = ArgDefault.select_value([base_name])
        Log.report(
            Log.Info, "pre entity_name: %s %s " %
            (entity_name, arg_template.entity_name))
        entity_name = ArgDefault.select_value(
            [arg_template.entity_name, entity_name])
        Log.report(Log.Info, "entity_name: %s " % entity_name)
        Log.report(
            Log.Info,
            "output_file: %s %s " % (arg_template.output_file, output_file))
        Log.report(Log.Info, "debug_file:  %s " % arg_template.debug_file)
        output_file = ArgDefault.select_value(
            [arg_template.output_file, output_file])
        debug_file = arg_template.debug_file
        # Specification
        io_precisions = ArgDefault.select_value([io_precisions])
        abs_accuracy = ArgDefault.select_value([abs_accuracy])
        # Optimization parameters
        backend = ArgDefault.select_value([arg_template.backend, backend])
        fast_path_extract = ArgDefault.select_value(
            [arg_template.fast_path_extract, fast_path_extract])
        # Debug verbosity
        debug_flag = ArgDefault.select_value([arg_template.debug, debug_flag])
        language = ArgDefault.select_value([arg_template.language, language])
        auto_test = arg_template.auto_test
        auto_test_std = arg_template.auto_test_std

        self.precision = arg_template.precision
        self.pipelined = arg_template.pipelined

        # io_precisions must be a list
        #     -> with a single element
        # XOR -> with as many elements as function arity (input + output arities)
        self.io_precisions = io_precisions

        ## enable the generation of numeric/functionnal auto-test
        self.auto_test_enable = (auto_test != False or auto_test_std != False)
        self.auto_test_number = auto_test
        self.auto_test_range = arg_template.auto_test_range
        self.auto_test_std = auto_test_std

        # enable/disable automatic exit once functional test is finished
        self.exit_after_test = arg_template.exit_after_test

        # enable post-generation RTL elaboration
        self.build_enable = arg_template.build_enable
        # enable post-elaboration simulation
        self.execute_trigger = arg_template.execute_trigger

        self.language = language

        # Naming logic, using provided information if available, otherwise deriving from base_name
        # base_name is e.g. exp
        # entity_name is e.g. expf or expd or whatever
        self.entity_name = entity_name if entity_name else generic_naming(
            base_name, self.io_precisions)

        self.output_file = output_file if output_file else self.entity_name + ".vhd"
        self.debug_file = debug_file if debug_file else "{}_dbg.do".format(
            self.entity_name)

        # debug version
        self.debug_flag = debug_flag
        # debug display
        self.display_after_gen = arg_template.display_after_gen
        self.display_after_opt = arg_template.display_after_opt

        # TODO: FIX which i/o precision to select
        # TODO: incompatible with fixed-point formats
        # self.sollya_precision = self.get_output_precision().get_sollya_object()

        self.abs_accuracy = abs_accuracy if abs_accuracy else S2**(
            -self.get_output_precision().get_precision())

        # target selection
        self.backend = backend

        # register control
        self.reset_pipeline = arg_template.reset_pipeline
        self.recirculate_pipeline = arg_template.recirculate_pipeline

        # optimization parameters
        self.fast_path_extract = fast_path_extract

        self.implementation = CodeEntity(self.entity_name)

        self.vhdl_code_generator = VHDLCodeGenerator(
            self.backend,
            declare_cst=False,
            disable_debug=not self.debug_flag,
            language=self.language)
        uniquifier = self.entity_name
        self.main_code_object = NestedCode(self.vhdl_code_generator,
                                           static_cst=False,
                                           uniquifier="{0}_".format(
                                               self.entity_name),
                                           code_ctor=VHDLCodeObject)
        if self.debug_flag:
            self.debug_code_object = CodeObject(self.language)
            self.debug_code_object << debug_utils_lib
            self.vhdl_code_generator.set_debug_code_object(
                self.debug_code_object)

        # pass scheduler instanciation
        self.pass_scheduler = PassScheduler()
        # recursive pass dependency
        pass_dep = PassDependency()
        for pass_uplet in arg_template.passes:
            pass_slot_tag, pass_tag = pass_uplet.split(":")
            pass_slot = PassScheduler.get_tag_class(pass_slot_tag)
            pass_class = Pass.get_pass_by_tag(pass_tag)
            pass_object = pass_class(self.backend)
            self.pass_scheduler.register_pass(pass_object,
                                              pass_dep=pass_dep,
                                              pass_slot=pass_slot)
            # linearly linking pass in the order they appear
            pass_dep = AfterPassById(pass_object.get_pass_id())

        # TODO/FIXME: can be overloaded
        if self.reset_pipeline:
            self.reset_signal = self.implementation.add_input_signal(
                "reset", ML_StdLogic)
        self.recirculate_signal_map = {}

    def get_pass_scheduler(self):
        return self.pass_scheduler

    ## Class method to generate a structure containing default arguments
    #  which must be overloaded by @p kw
    @staticmethod
    def get_default_args(**kw):
        return DefaultEntityArgTemplate(**kw)

    def get_implementation(self):
        """ return meta-entity CodeEntity object """
        return self.implementation

    ## name generation
    #  @param base_name string, name to be extended for unifiquation
    def uniquify_name(self, base_name):
        """ return a unique identifier, combining base_name + function_name """
        return "%s_%s" % (self.function_name, base_name)

    ## emulation code generation
    def generate_emulate(self):
        raise NotImplementedError

    # try to extract 'clk' input or create it if
    # it does not exist
    def get_clk_input(self):
        clk_in = self.implementation.get_input_by_tag("clk")
        if not clk_in is None:
            return clk_in
        else:
            return self.implementation.add_input_signal('clk', ML_StdLogic)

    def get_output_precision(self):
        return self.io_precisions[0]

    def get_input_precision(self):
        return self.io_precisions[-1]

    def get_sollya_precision(self):
        """ return the main precision use for sollya calls """
        return self.sollya_precision

    def generate_interfaces(self):
        """ Generate entity interfaces """
        raise NotImplementedError

    def generate_scheme(self):
        """ generate MDL scheme for function implementation """
        Log.report(
            Log.Error,
            "generate_scheme must be overloaded by ML_EntityBasis child")

    ##
    # @return main_scheme, [list of sub-CodeFunction object]
    def generate_entity_list(self):
        return self.generate_scheme()

    ## submit operation node to a standard optimization procedure
    #  @param pre_scheme ML_Operation object to be optimized
    #  @param copy  dict(optree -> optree) copy map to be used while duplicating pre_scheme (if None disable copy)
    #  @param enable_subexpr_sharing boolean flag, enables sub-expression sharing optimization
    #  @param verbose boolean flag, enable verbose mode
    #  @return optimizated scheme
    def optimise_scheme(self,
                        pre_scheme,
                        copy=None,
                        enable_subexpr_sharing=True,
                        verbose=True):
        """ default scheme optimization """
        # copying when required
        scheme = pre_scheme if copy is None else pre_scheme.copy(copy)
        return scheme

    ##
    #  @return main code object associted with function implementation
    def get_main_code_object(self):
        return self.main_code_object

    def get_recirculate_signal(self, stage_id):
        """ generate / retrieve the signal used to recirculate
        register at pipeline stage <stage_id> """
        return self.recirculate_signal_map[stage_id]

    def is_main_entity(self, entity):
        """ Overloadable predicate to determine which sub entities should be
        considered principal """
        return True

    ## generate VHDL code for entity implenetation
    #  Code is generated within the main code object
    #  and dumped to a file named after implementation's name
    #  @param code_function_list list of CodeFunction to be generated (as sub-function )
    #  @return void
    def generate_code(self, code_entity_list, language=VHDL_Code):
        """ Final VHDL generation, once the evaluation scheme has been optimized"""
        # registering scheme as function implementation
        #self.implementation.set_scheme(scheme)
        # main code object
        code_object = self.get_main_code_object()

        # list of ComponentObject which are entities on which self depends
        common_entity_list = []
        generated_entity = []

        self.result = code_object
        code_str = ""
        while len(code_entity_list) > 0:
            code_entity = code_entity_list.pop(0)
            if code_entity in generated_entity:
                continue
            entity_code_object = NestedCode(self.vhdl_code_generator,
                                            static_cst=False,
                                            uniquifier="{0}_".format(
                                                self.entity_name),
                                            code_ctor=VHDLCodeObject)
            if self.is_main_entity(code_entity):
                self.vhdl_code_generator.disable_debug = not self.debug_flag
            else:
                self.vhdl_code_generator.disable_debug = True
            result = code_entity.add_definition(self.vhdl_code_generator,
                                                language,
                                                entity_code_object,
                                                static_cst=False)
            result.add_library("ieee")
            result.add_header("ieee.std_logic_1164.all")
            result.add_header("ieee.std_logic_arith.all")
            result.add_header("ieee.std_logic_misc.all")
            code_str += result.get(self.vhdl_code_generator, headers=True)

            generated_entity.append(code_entity)

            # adding the entities encountered during code generation
            # for future generation
            # TODO: document
            extra_entity_list = [
                comp_object.get_code_entity()
                for comp_object in entity_code_object.get_entity_list()
            ]
            Log.report(
                Log.Info, "appending {} extra entit(y/ies)\n".format(
                    len(extra_entity_list)))
            code_entity_list += extra_entity_list

        Log.report(Log.Verbose, "Generating VHDL code in " + self.output_file)
        output_stream = open(self.output_file, "w")
        output_stream.write(code_str)
        output_stream.close()
        if self.debug_flag:
            Log.report(Log.Verbose,
                       "Generating Debug code in {}".format(self.debug_file))
            debug_code_str = self.debug_code_object.get(None)
            debug_stream = open(self.debug_file, "w")
            debug_stream.write(debug_code_str)
            debug_stream.close()

    def gen_implementation(self,
                           display_after_gen=False,
                           display_after_opt=False,
                           enable_subexpr_sharing=True):
        ## apply @p pass_object optimization pass
        #  to the scheme of each entity in code_entity_list
        def entity_execute_pass(scheduler, pass_object, code_entity_list):
            for code_entity in code_entity_list:
                entity_scheme = code_entity.get_scheme()
                processed_scheme = pass_object.execute(entity_scheme)
                # todo check pass effect
                # code_entity.set_scheme(processed_scheme)
            return code_entity_list

        # generate scheme
        code_entity_list = self.generate_entity_list()

        # defaulting pipeline stage to None
        self.implementation.set_current_stage(None)

        Log.report(Log.Info, "Applying passes just before pipelining")
        code_entity_list = self.pass_scheduler.get_full_execute_from_slot(
            code_entity_list, PassScheduler.BeforePipelining,
            entity_execute_pass)

        #print "before pipelining dump: "
        #for code_entity in code_entity_list:
        #    scheme = code_entity.get_scheme()
        #    print scheme.get_str(
        #        depth = None,
        #        display_precision = True,
        #        memoization_map = {},
        #        custom_callback = lambda op: " [S={}] ".format(op.attributes.init_stage)
        #    )

        if self.pipelined:
            self.stage_num = generate_pipeline_stage(
                self,
                reset=self.reset_pipeline,
                recirculate=self.recirculate_pipeline)
        else:
            self.stage_num = 1
        Log.report(Log.Info,
                   "there is/are {} pipeline stage(s)".format(self.stage_num))

        Log.report(Log.Info, "Applying passes just after pipelining")
        code_entity_list = self.pass_scheduler.get_full_execute_from_slot(
            code_entity_list, PassScheduler.AfterPipelining,
            entity_execute_pass)

        # stage duration (in ns)
        time_step = 10

        if self.auto_test_enable:
            code_entity_list += self.generate_auto_test(
                test_num=self.auto_test_number if self.auto_test_number else 0,
                test_range=self.auto_test_range,
                time_step=time_step)

        for code_entity in code_entity_list:
            scheme = code_entity.get_scheme()
            if display_after_gen or self.display_after_gen:
                print("function %s, after gen " % code_entity.get_name())
                print(
                    scheme.get_str(depth=None,
                                   display_precision=True,
                                   memoization_map={}))

            # optimize scheme
            opt_scheme = self.optimise_scheme(
                scheme, enable_subexpr_sharing=enable_subexpr_sharing)

            if display_after_opt or self.display_after_opt:
                print("function %s, after opt " % code_entity.get_name())
                print(
                    scheme.get_str(depth=None,
                                   display_precision=True,
                                   memoization_map={}))

        print("Applying passes just before codegen")
        code_entity_list = self.pass_scheduler.get_full_execute_from_slot(
            code_entity_list, PassScheduler.JustBeforeCodeGen,
            entity_execute_pass)

        # generate VHDL code to implement scheme
        self.generate_code(code_entity_list, language=self.language)

        if self.execute_trigger:
            # rtl elaboration
            print("Elaborating {}".format(self.output_file))
            elab_cmd = "vlib work && vcom -2008 {}".format(self.output_file)
            elab_result = subprocess.call(elab_cmd, shell=True)
            print("Elaboration result: ", elab_result)
            # debug cmd
            debug_cmd = "do {debug_file};".format(
                debug_file=self.debug_file) if self.debug_flag else ""
            debug_cmd += " exit;" if self.exit_after_test else ""
            # simulation
            test_delay = time_step * (self.stage_num + 2) * (
                self.auto_test_number +
                (len(self.standard_test_cases) if self.auto_test_std else 0) +
                100)
            sim_cmd = "vsim -c work.testbench -do \"run {test_delay} ns; {debug_cmd}\"".format(
                entity=self.entity_name,
                debug_cmd=debug_cmd,
                test_delay=test_delay)
            Log.report(Log.Info, "simulation command:\n{}".format(sim_cmd))
            sim_result = subprocess.call(sim_cmd, shell=True)
            if sim_result:
                Log.report(Log.Error,
                           "simulation failed [{}]".format(sim_result))
            else:
                Log.report(Log.Info, "simulation success")

        elif self.build_enable:
            print("Elaborating {}".format(self.output_file))
            elab_cmd = "vlib work && vcom -2008 {}".format(self.output_file)
            Log.report(Log.Info, "elaboration command:\n{}".format(elab_cmd))
            elab_result = subprocess.call(elab_cmd, shell=True)
            if elab_result:
                Log.report(Log.Error,
                           "failed to elaborate [{}]".format(elab_result))
            else:
                Log.report(Log.Info, "elaboration success")

    # Currently mostly empty, to be populated someday
    def gen_emulation_code(self, precode, code, postcode):
        """generate C code that emulates the function, typically using MPFR.
    precode is declaration code (before the test loop)
    postcode is clean-up code (after the test loop)
    Takes the input and output names from input_list and output_list.
    Must postfix output names with "ref_", "ref_ru_", "ref_rd_"

    This class method performs commonly used initializations.
    It initializes the MPFR versions of the inputs and outputs,
    with the same names prefixed with "mp" and possibly postfixed with "rd" and "ru".

    It should be overloaded by actual metafunctions, and called by the overloading function. 
    """

    ## provide numeric evaluation of the main function on @p input_value
    def numeric_emulate(self, input_value):
        raise NotImplementedError

    def generate_test_case(self,
                           input_signals,
                           io_map,
                           index,
                           test_range=Interval(-1.0, 1.0)):
        """ generic test case generation: generate a random input
        with index @p index

        Args:
            index (int): integer index of the test case

        Returns:
            dict: mapping (input tag -> numeric value)
    """
        # extracting test interval boundaries
        low_input = sollya.inf(test_range)
        high_input = sollya.sup(test_range)
        input_values = {}
        for input_tag in input_signals:
            input_signal = io_map[input_tag]
            # FIXME: correct value generation depending on signal precision
            input_precision = input_signal.get_precision().get_base_format()
            if isinstance(input_precision, ML_FP_Format):
                input_value = generate_random_fp_value(input_precision,
                                                       low_input, high_input)
            elif isinstance(input_precision, ML_Fixed_Format):
                # TODO: does not depend on low and high range bounds
                input_value = generate_random_fixed_value(input_precision)
            else:
                input_value = random.randrange(
                    2**input_precision.get_bit_size())
            # registering input value
            input_values[input_tag] = input_value
        return input_values

    def init_test_generator(self):
        """ Generic initialization of test case generator """
        return

    def implement_test_case(self, io_map, input_values, output_signals,
                            output_values, time_step):
        """ Implement the test case check and assertion whose I/Os values
          are described in input_values and output_values dict """
        test_statement = Statement()
        input_msg = ""
        # Adding input setting
        for input_tag in input_values:
            input_signal = io_map[input_tag]
            # FIXME: correct value generation depending on signal precision
            input_value = input_values[input_tag]
            test_statement.add(get_input_assign(input_signal, input_value))
            input_msg += get_input_msg(input_tag, input_signal, input_value)

        test_statement.add(Wait(time_step * (self.stage_num + 2)))

        # Adding output value comparison
        for output_tag in output_signals:
            output_signal = output_signals[output_tag]
            output_value = output_values[output_tag]
            output_cst_value = Constant(
                output_value, precision=output_signal.get_precision())

            value_msg = get_output_value_msg(output_signal, output_value)
            test_pass_cond, check_statement = get_output_check_statement(
                output_signal, output_tag, output_cst_value)

            test_statement.add(check_statement)
            assert_statement = Assert(
                test_pass_cond,
                "\"unexpected value for inputs {input_msg}, output {output_tag}, expecting {value_msg}, got: \""
                .format(input_msg=input_msg,
                        output_tag=output_tag,
                        value_msg=value_msg),
                severity=Assert.Failure)
            test_statement.add(assert_statement)
        return test_statement

    def generate_auto_test(self,
                           test_num=10,
                           test_range=Interval(-1.0, 1.0),
                           debug=False,
                           time_step=10):
        """ time_step: duration of a stage (in ns) """
        # instanciating tested component
        # map of input_tag -> input_signal and output_tag -> output_signal
        io_map = {}
        # map of input_tag -> input_signal, excludind commodity signals
        # (e.g. clock and reset)
        input_signals = {}
        # map of output_tag -> output_signal
        output_signals = {}
        # excluding clock and reset signals from argument list
        # reduced_arg_list = [input_port for input_port in self.implementation.get_arg_list() if not input_port.get_tag() in ["clk", "reset"]]
        reduced_arg_list = self.implementation.get_arg_list()
        for input_port in reduced_arg_list:
            input_tag = input_port.get_tag()
            input_signal = Signal(input_tag + "_i",
                                  precision=input_port.get_precision(),
                                  var_type=Signal.Local)
            io_map[input_tag] = input_signal
            if not input_tag in ["clk", "reset"]:
                input_signals[input_tag] = input_signal
        for output_port in self.implementation.get_output_port():
            output_tag = output_port.get_tag()
            output_signal = Signal(output_tag + "_o",
                                   precision=output_port.get_precision(),
                                   var_type=Signal.Local)
            io_map[output_tag] = output_signal
            output_signals[output_tag] = output_signal

        # building list of test cases
        tc_list = []

        self_component = self.implementation.get_component_object()
        self_instance = self_component(io_map=io_map, tag="tested_entity")
        test_statement = Statement()

        # initializing random test case generator
        self.init_test_generator()

        # Appending standard test cases if required
        if self.auto_test_std:
            tc_list += self.standard_test_cases

        for i in range(test_num):
            input_values = self.generate_test_case(input_signals, io_map, i,
                                                   test_range)
            tc_list.append((input_values, None))

        def compute_results(tc):
            """ update test case with output values if required """
            input_values, output_values = tc
            if output_values is None:
                return input_values, self.numeric_emulate(input_values)
            else:
                return tc

        # filling output values
        tc_list = [compute_results(tc) for tc in tc_list]

        for input_values, output_values in tc_list:
            test_statement.add(
                self.implement_test_case(io_map, input_values, output_signals,
                                         output_values, time_step))

        testbench = CodeEntity("testbench")
        test_process = Process(
            test_statement,
            # end of test
            Assert(Constant(0, precision=ML_Bool),
                   " \"end of test, no error encountered \"",
                   severity=Assert.Failure))

        testbench_scheme = Statement(self_instance, test_process)

        if self.pipelined:
            half_time_step = time_step / 2
            assert (half_time_step * 2) == time_step
            # adding clock process for pipelined bench
            clk_process = Process(
                Statement(
                    ReferenceAssign(io_map["clk"],
                                    Constant(1, precision=ML_StdLogic)),
                    Wait(half_time_step),
                    ReferenceAssign(io_map["clk"],
                                    Constant(0, precision=ML_StdLogic)),
                    Wait(half_time_step),
                ))
            testbench_scheme.push(clk_process)

        testbench.add_process(testbench_scheme)

        return [testbench]

    @staticmethod
    def get_name():
        return ML_EntityBasis.function_name

    # list of input to be used for standard test validation
    standard_test_cases = []
Example #5
0
    def generate_auto_test(self,
                           test_num=10,
                           test_range=Interval(-1.0, 1.0),
                           debug=False,
                           time_step=10):
        """ time_step: duration of a stage (in ns) """
        # instanciating tested component
        # map of input_tag -> input_signal and output_tag -> output_signal
        io_map = {}
        # map of input_tag -> input_signal, excludind commodity signals
        # (e.g. clock and reset)
        input_signals = {}
        # map of output_tag -> output_signal
        output_signals = {}
        # excluding clock and reset signals from argument list
        # reduced_arg_list = [input_port for input_port in self.implementation.get_arg_list() if not input_port.get_tag() in ["clk", "reset"]]
        reduced_arg_list = self.implementation.get_arg_list()
        for input_port in reduced_arg_list:
            input_tag = input_port.get_tag()
            input_signal = Signal(input_tag + "_i",
                                  precision=input_port.get_precision(),
                                  var_type=Signal.Local)
            io_map[input_tag] = input_signal
            if not input_tag in ["clk", "reset"]:
                input_signals[input_tag] = input_signal
        for output_port in self.implementation.get_output_port():
            output_tag = output_port.get_tag()
            output_signal = Signal(output_tag + "_o",
                                   precision=output_port.get_precision(),
                                   var_type=Signal.Local)
            io_map[output_tag] = output_signal
            output_signals[output_tag] = output_signal

        # building list of test cases
        tc_list = []

        self_component = self.implementation.get_component_object()
        self_instance = self_component(io_map=io_map, tag="tested_entity")
        test_statement = Statement()

        # initializing random test case generator
        self.init_test_generator()

        # Appending standard test cases if required
        if self.auto_test_std:
            tc_list += self.standard_test_cases

        for i in range(test_num):
            input_values = self.generate_test_case(input_signals, io_map, i,
                                                   test_range)
            tc_list.append((input_values, None))

        def compute_results(tc):
            """ update test case with output values if required """
            input_values, output_values = tc
            if output_values is None:
                return input_values, self.numeric_emulate(input_values)
            else:
                return tc

        # filling output values
        tc_list = [compute_results(tc) for tc in tc_list]

        for input_values, output_values in tc_list:
            input_msg = ""

            # Adding input setting
            for input_tag in input_values:
                input_signal = io_map[input_tag]
                # FIXME: correct value generation depending on signal precision
                input_value = input_values[input_tag]
                test_statement.add(
                    ReferenceAssign(
                        input_signal,
                        Constant(input_value,
                                 precision=input_signal.get_precision())))
                value_msg = input_signal.get_precision().get_cst(
                    input_value, language=VHDL_Code).replace('"', "'")
                value_msg += " / " + hex(input_signal.get_precision(
                ).get_base_format().get_integer_coding(input_value))
                input_msg += " {}={} ".format(input_tag, value_msg)
            test_statement.add(Wait(time_step * self.stage_num))
            # Adding output value comparison
            for output_tag in output_signals:
                output_signal = output_signals[output_tag]
                output_value = Constant(
                    output_values[output_tag],
                    precision=output_signal.get_precision())
                output_precision = output_signal.get_precision()
                expected_dec = output_precision.get_cst(
                    output_values[output_tag],
                    language=VHDL_Code).replace('"', "'")
                expected_hex = " / " + hex(
                    output_precision.get_base_format().get_integer_coding(
                        output_values[output_tag]))
                value_msg = "{} / {}".format(expected_dec, expected_hex)

                test_pass_cond = Comparison(output_signal,
                                            output_value,
                                            specifier=Comparison.Equal,
                                            precision=ML_Bool)

                test_statement.add(
                    ConditionBlock(
                        LogicalNot(test_pass_cond, precision=ML_Bool),
                        Report(
                            Concatenation(
                                " result for {}: ".format(output_tag),
                                Conversion(TypeCast(
                                    output_signal,
                                    precision=ML_StdLogicVectorFormat(
                                        output_signal.get_precision(
                                        ).get_bit_size())),
                                           precision=ML_String),
                                precision=ML_String))))
                test_statement.add(
                    Assert(
                        test_pass_cond,
                        "\"unexpected value for inputs {input_msg}, output {output_tag}, expecting {value_msg}, got: \""
                        .format(input_msg=input_msg,
                                output_tag=output_tag,
                                value_msg=value_msg),
                        severity=Assert.Failure))

        testbench = CodeEntity("testbench")
        test_process = Process(
            test_statement,
            # end of test
            Assert(Constant(0, precision=ML_Bool),
                   " \"end of test, no error encountered \"",
                   severity=Assert.Failure))

        testbench_scheme = Statement(self_instance, test_process)

        if self.pipelined:
            half_time_step = time_step / 2
            assert (half_time_step * 2) == time_step
            # adding clock process for pipelined bench
            clk_process = Process(
                Statement(
                    ReferenceAssign(io_map["clk"],
                                    Constant(1, precision=ML_StdLogic)),
                    Wait(half_time_step),
                    ReferenceAssign(io_map["clk"],
                                    Constant(0, precision=ML_StdLogic)),
                    Wait(half_time_step),
                ))
            testbench_scheme.push(clk_process)

        testbench.add_process(testbench_scheme)

        return [testbench]
Example #6
0
  def generate_datafile_testbench(self, tc_list, io_map, input_signals, output_signals, time_step, test_fname="test.input"):
    """ Generate testbench with input and output data externalized in
        a data file """
    # textio function to read hexadecimal text
    def FCT_HexaRead_gen(input_format):
        legalized_input_format = input_format
        FCT_HexaRead = FunctionObject("hread", [HDL_LINE, legalized_input_format], ML_Void, FunctionOperator("hread", void_function=True, arity=2))
        return FCT_HexaRead
    # textio function to read binary text
    FCT_Read = FunctionObject("read", [HDL_LINE, ML_StdLogic], ML_Void, FunctionOperator("read", void_function=True, arity=2))
    input_line = Variable("input_line", precision=HDL_LINE, var_type=Variable.Local)

    # building ordered list of input and output signal names
    input_signal_list = [sname for sname in input_signals.keys()]
    input_statement = Statement()
    for input_name in input_signal_list:
        input_format = input_signals[input_name].precision
        input_var = Variable(
            "v_" + input_name,
            precision=input_format,
            var_type=Variable.Local)
        if input_format is ML_StdLogic:
            input_statement.add(FCT_Read(input_line, input_var))
        else:
            input_statement.add(FCT_HexaRead_gen(input_format)(input_line, input_var))
        input_statement.add(ReferenceAssign(input_signals[input_name], input_var))

    output_signal_list = [sname for sname in output_signals.keys()]
    output_statement = Statement()
    for output_name in output_signal_list:
        output_format = output_signals[output_name].precision
        output_var = Variable(
            "v_" + output_name,
            precision=output_format,
            var_type=Variable.Local)
        if output_format is ML_StdLogic:
            output_statement.add(FCT_Read(input_line, output_var))
        else:
            output_statement.add(FCT_HexaRead_gen(output_format)(input_line, output_var))

        output_signal = output_signals[output_name]
        #value_msg = get_output_value_msg(output_signal, output_value)
        test_pass_cond, check_statement = get_output_check_statement(output_signal, output_name, output_var)

        input_msg = multi_Concatenation(*tuple(sum([[" %s=" % input_tag, signal_str_conversion(input_signals[input_tag], input_signals[input_tag].precision)] for input_tag in input_signal_list], [])))

        output_statement.add(check_statement)
        assert_statement = Assert(
            test_pass_cond,
            multi_Concatenation(
                "unexpected value for inputs ",
                input_msg,
                " expecting :",
                signal_str_conversion(output_var, output_format),
                " got :",
                signal_str_conversion(output_signal, output_format),
               precision = ML_String
            ),
            severity=Assert.Failure
        )
        output_statement.add(assert_statement)

    self_component = self.implementation.get_component_object()
    self_instance = self_component(io_map = io_map, tag = "tested_entity")
    test_statement = Statement()

    DATA_FILE_NAME = test_fname

    with open(DATA_FILE_NAME, "w") as data_file:
        # dumping column tags
        data_file.write("# " + " ".join(input_signal_list + output_signal_list) + "\n")

        def get_raw_cst_string(cst_format, cst_value):
            size = int((cst_format.get_bit_size() + 3) / 4)
            return ("{:x}").format(cst_format.get_base_format().get_integer_coding(cst_value)).zfill(size)

        for input_values, output_values in tc_list:
            # TODO; generate test data file
            cst_list = []
            for input_name in input_signal_list:
                input_value = input_values[input_name]
                input_format = input_signals[input_name].get_precision()
                cst_list.append(get_raw_cst_string(input_format, input_value))

            for output_name in output_signal_list:
                output_value = output_values[output_name]
                output_format = output_signals[output_name].get_precision()
                cst_list.append(get_raw_cst_string(output_format, output_value))
            # dumping line into file
            data_file.write(" ".join(cst_list) + "\n")

    input_stream = Variable("data_file", precision=HDL_FILE, var_type=Variable.Local)
    file_status = Variable("file_status", precision=HDL_OPEN_FILE_STATUS, var_type=Variable.Local)
    FCT_EndFile = FunctionObject("endfile", [HDL_FILE], ML_Bool, FunctionOperator("endfile", arity=1)) 
    FCT_OpenFile = FunctionObject(
        "FILE_OPEN", [HDL_OPEN_FILE_STATUS, HDL_FILE, ML_String], ML_Void,
        FunctionOperator(
            "FILE_OPEN",
            arg_map={0: FO_Arg(0), 1: FO_Arg(1), 2: FO_Arg(2), 3: "READ_MODE"},
            void_function=True))
    FCT_ReadLine =  FunctionObject(
        "readline", [HDL_FILE, HDL_LINE], ML_Void,
        FunctionOperator("readline", void_function=True, arity=2))

    reset_statement = self.get_reset_statement(io_map, time_step)
    OPEN_OK = Constant("OPEN_OK", precision=HDL_OPEN_FILE_STATUS)

    testbench = CodeEntity("testbench")
    test_process = Process(
        reset_statement,
        FCT_OpenFile(file_status, input_stream, DATA_FILE_NAME),
        ConditionBlock(
            Comparison(file_status, OPEN_OK, specifier=Comparison.NotEqual),
          Assert(
            Constant(0, precision=ML_Bool),
            " \"failed to open file {}\"".format(DATA_FILE_NAME),
            severity=Assert.Failure
          )
        ),
        # consume legend line
        FCT_ReadLine(input_stream, input_line),
        WhileLoop(
            LogicalNot(FCT_EndFile(input_stream)),
            Statement(
                FCT_ReadLine(input_stream, input_line),
                input_statement,
                Wait(time_step * (self.stage_num + 2)),
                output_statement,
            ),
        ),
      # end of test
      Assert(
        Constant(0, precision = ML_Bool),
        " \"end of test, no error encountered \"",
        severity = Assert.Warning
      ),
      # infinite end loop
        WhileLoop(
            Constant(1, precision=ML_Bool),
            Statement(
                Wait(time_step * (self.stage_num + 2)),
            )
        )
    )

    testbench_scheme = Statement(
      self_instance,
      test_process
    )

    if self.pipelined:
        half_time_step = time_step / 2
        assert (half_time_step * 2) == time_step
        # adding clock process for pipelined bench
        clk_process = Process(
            Statement(
                ReferenceAssign(
                    io_map["clk"],
                    Constant(1, precision = ML_StdLogic)
                ),
                Wait(half_time_step),
                ReferenceAssign(
                    io_map["clk"],
                    Constant(0, precision = ML_StdLogic)
                ),
                Wait(half_time_step),
            )
        )
        testbench_scheme.push(clk_process)

    testbench.add_process(testbench_scheme)

    return [testbench]
Example #7
0
class ML_EntityBasis(object):
  name = "entity_basis"

  ## constructor
  #  @param base_name string function name (without precision considerations)
  #  @param function_name
  #  @param output_file string name of source code output file
  #  @param debug_file string name of debug script output file
  #  @param io_precisions input/output ML_Format list
  #  @param libm_compliant boolean flag indicating whether or not the function
  #                        should be compliant with standard libm specification
  #                        (wrt exception, error ...)
  #  @param fast_path_extract boolean flag indicating whether or not fast
  #                           path extraction optimization must be applied
  #  @param debug_flag boolean flag, indicating whether or not debug code
  #                    must be generated
  def __init__(self,
             # Naming
             base_name = ArgDefault("unknown_entity", 2),
             entity_name= ArgDefault(None, 2),
             output_file = ArgDefault(None, 2),
             # Specification
             io_precisions = ArgDefault([ML_Binary32], 2),
             libm_compliant = ArgDefault(True, 2),
             # Optimization parameters
             backend = ArgDefault(VHDLBackend(), 2),
             fast_path_extract = ArgDefault(True, 2),
             # Debug verbosity
             debug_flag = ArgDefault(False, 2),
             language = ArgDefault(VHDL_Code, 2),
             arg_template = DefaultEntityArgTemplate
         ):
    # selecting argument values among defaults
    base_name = ArgDefault.select_value([base_name])
    Log.report(Log.Info, "pre entity_name: %s %s " % (entity_name, arg_template.entity_name))
    entity_name = ArgDefault.select_value([arg_template.entity_name, entity_name])
    Log.report(Log.Info, "entity_name: %s " % entity_name)
    Log.report(Log.Info, "output_file: %s %s " % (arg_template.output_file, output_file))
    Log.report(Log.Info, "debug_file:  %s "% arg_template.debug_file)
    output_file = ArgDefault.select_value([arg_template.output_file, output_file])
    debug_file  = arg_template.debug_file
    # Specification
    io_precisions = ArgDefault.select_value([io_precisions])
    # Optimization parameters
    backend = ArgDefault.select_value([arg_template.backend, backend])
    fast_path_extract = ArgDefault.select_value([arg_template.fast_path_extract, fast_path_extract])
    # Debug verbosity
    debug_flag    = ArgDefault.select_value([arg_template.debug, debug_flag])
    language      = ArgDefault.select_value([arg_template.language, language])
    auto_test     = arg_template.auto_test
    auto_test_std = arg_template.auto_test_std

    self.precision = arg_template.precision
    self.io_formats = arg_template.io_formats
    self.pipelined = arg_template.pipelined

    # io_precisions must be a list
    #     -> with a single element
    # XOR -> with as many elements as function arity (input + output arities)
    self.io_precisions = io_precisions


    ## enable the generation of numeric/functionnal auto-test
    self.auto_test_enable  = (auto_test != False or auto_test_std != False)
    self.auto_test_number  = auto_test
    self.auto_test_range   = arg_template.auto_test_range
    self.auto_test_std     = auto_test_std
    # embedded test in behavior or externalize inputs/expected in data file
    self.externalized_test_data = arg_template.externalized_test_data

    # enable/disable automatic exit once functional test is finished
    self.exit_after_test   = arg_template.exit_after_test

    # enable post-generation RTL elaboration
    self.build_enable = arg_template.build_enable
    # enable post-elaboration simulation
    self.execute_trigger = arg_template.execute_trigger

    self.simulator = arg_template.simulator

    self.language = language

    # Naming logic, using provided information if available, otherwise deriving from base_name
    # base_name is e.g. exp
    # entity_name is e.g. expf or expd or whatever
    self.entity_name = entity_name if entity_name else generic_naming(base_name, self.io_precisions)

    self.output_file = output_file if output_file else self.entity_name + ".vhd"
    self.debug_file  = debug_file  if debug_file  else "{}_dbg.do".format(self.entity_name)

    # debug version
    self.debug_flag = debug_flag
    # debug display
    self.display_after_gen = arg_template.display_after_gen
    self.display_after_opt = arg_template.display_after_opt

    self.decorate_code=arg_template.decorate_code


    # target selection
    self.backend = backend

    # register control
    self.reset_pipeline, self.synchronous_reset = arg_template.reset_pipeline
    self.negate_reset = arg_template.negate_reset
    self.reset_name = arg_template.reset_name
    self.recirculate_pipeline = arg_template.recirculate_pipeline


    # optimization parameters
    self.fast_path_extract = fast_path_extract

    self.implementation = CodeEntity(self.entity_name)

    self.vhdl_code_generator = VHDLCodeGenerator(self.backend, declare_cst = False, disable_debug = not self.debug_flag, language = self.language, decorate_code=self.decorate_code)
    uniquifier = self.entity_name
    self.main_code_object = NestedCode(
        self.vhdl_code_generator, static_cst=False,
        uniquifier="{0}_".format(self.entity_name),
        code_ctor=VHDLCodeObject,
        shared_symbol_list=[MultiSymbolTable.EntitySymbol, MultiSymbolTable.ProtectedSymbol]
    )
    if self.debug_flag:
      self.debug_code_object = CodeObject(self.language)
      self.debug_code_object << debug_utils_lib
      self.vhdl_code_generator.set_debug_code_object(self.debug_code_object)

    # pass scheduler instanciation
    self.pass_scheduler = PassScheduler()
    # recursive pass dependency
    pass_dep = PassDependency()
    Log.report(Log.Verbose, "extra_passes: {}".format(arg_template.extra_passes))
    for pass_uplet in arg_template.passes + arg_template.extra_passes:
      pass_slot_tag, pass_tag = pass_uplet.split(":")
      pass_slot = PassScheduler.get_tag_class(pass_slot_tag)
      pass_class  = Pass.get_pass_by_tag(pass_tag)
      pass_object = pass_class(self.backend)
      self.pass_scheduler.register_pass(pass_object, pass_dep = pass_dep, pass_slot = pass_slot)
      # linearly linking pass in the order they appear
      pass_dep = AfterPassById(pass_object.get_pass_id())

    # TODO/FIXME: can be overloaded
    if  self.reset_pipeline:
        self.reset_signal = self.implementation.add_input_signal(self.reset_name, ML_StdLogic)
    self.recirculate_signal_map = dict((index, self.implementation.add_input_signal(v, ML_StdLogic)) for index, v in arg_template.recirculate_signal_map.items())

  def get_pass_scheduler(self):
    return self.pass_scheduler


  ## Class method to generate a structure containing default arguments
  #  which must be overloaded by @p kw
  @staticmethod
  def get_default_args(**kw):
    return DefaultEntityArgTemplate(**kw)

  def get_implementation(self):
    """ return meta-entity CodeEntity object """
    return self.implementation

  ## name generation
  #  @param base_name string, name to be extended for unifiquation
  def uniquify_name(self, base_name):
    """ return a unique identifier, combining base_name + function_name """
    return "%s_%s" % (self.function_name, base_name)

  ## emulation code generation
  def generate_emulate(self):
    raise NotImplementedError


  # try to extract 'clk' input or create it if
  # it does not exist
  def get_clk_input(self):
    clk_in = self.implementation.get_input_by_tag("clk")
    if not clk_in is None:
      return clk_in
    else:
      return self.implementation.add_input_signal('clk', ML_StdLogic)


  def get_output_precision(self):
    return self.io_precisions[0]

  def get_input_precision(self):
    return self.io_precisions[-1]

  def get_io_format(self, tag):
    return self.io_formats[tag]


  def get_sollya_precision(self):
    """ return the main precision use for sollya calls """
    return self.sollya_precision

  def generate_interfaces(self):
    """ Generate entity interfaces """
    raise NotImplementedError

  def generate_scheme(self):
    """ generate MDL scheme for function implementation """
    Log.report(Log.Error, "generate_scheme must be overloaded by ML_EntityBasis child")

  ## 
  # @return main_scheme, [list of sub-CodeFunction object]
  def generate_entity_list(self):
    return self.generate_scheme()

  ## submit operation node to a standard optimization procedure
  #  @param pre_scheme ML_Operation object to be optimized
  #  @param copy  dict(optree -> optree) copy map to be used while duplicating pre_scheme (if None disable copy)
  #  @param enable_subexpr_sharing boolean flag, enables sub-expression sharing optimization
  #  @param verbose boolean flag, enable verbose mode
  #  @return optimizated scheme 
  def optimise_scheme(self, pre_scheme, copy = None, enable_subexpr_sharing = True, verbose = True):
    """ default scheme optimization """
    # copying when required
    scheme = pre_scheme if copy is None else pre_scheme.copy(copy)
    return scheme


  ## 
  #  @return main code object associted with function implementation
  def get_main_code_object(self):
    return self.main_code_object

  def get_recirculate_signal(self, stage_id):
    """ generate / retrieve the signal used to recirculate
        register at pipeline stage <stage_id> """
    try:
        return self.recirculate_signal_map[stage_id]
    except KeyError as e:
        Log.report(Log.Error, "stage {} has no associated recirculation signal in recirculate_signal_map", stage_id, error=e)


  def is_main_entity(self, entity):
    """ Overloadable predicate to determine which sub entities should be
        considered principal """
    return True

  ## generate VHDL code for entity implenetation 
  #  Code is generated within the main code object
  #  and dumped to a file named after implementation's name
  #  @param code_function_list list of CodeFunction to be generated (as sub-function )
  #  @return void
  def generate_code(self, code_entity_list, language = VHDL_Code):
    """ Final VHDL generation, once the evaluation scheme has been optimized"""
    # registering scheme as function implementation
    #self.implementation.set_scheme(scheme)
    # main code object
    code_object = self.get_main_code_object()

    # list of ComponentObject which are entities on which self depends
    common_entity_list = []
    generated_entity = []

    self.result = code_object
    code_str = ""
    while len(code_entity_list) > 0:
      code_entity = code_entity_list.pop(0)
      if code_entity in generated_entity:
        continue
      entity_code_object = NestedCode(
        self.vhdl_code_generator, static_cst=False,
        uniquifier="{0}_".format(self.entity_name),
        code_ctor=VHDLCodeObject,
        shared_symbol_list=[MultiSymbolTable.EntitySymbol, MultiSymbolTable.ProtectedSymbol],
      )
      if self.is_main_entity(code_entity):
        self.vhdl_code_generator.disable_debug = not self.debug_flag
      else:
        self.vhdl_code_generator.disable_debug = True
      result = code_entity.add_definition(self.vhdl_code_generator, language, entity_code_object, static_cst = False)
      result.add_library("ieee")
      result.add_header("ieee.std_logic_1164.all")
      result.add_header("ieee.std_logic_arith.all")
      result.add_header("ieee.std_logic_misc.all")
      result.add_header("STD.textio.all")
      result.add_header("ieee.std_logic_textio.all")
      code_str += result.get(self.vhdl_code_generator, headers = True)

      generated_entity.append(code_entity)

      # adding the entities encountered during code generation
      # for future generation
      # TODO: document
      extra_entity_list = [
            comp_object.get_code_entity() for comp_object in
                entity_code_object.get_entity_list()
      ]
      Log.report(Log.Info, "appending {} extra entit(y/ies)\n".format(len(extra_entity_list)))
      code_entity_list += extra_entity_list

    Log.report(Log.Verbose, "Generating VHDL code in " + self.output_file)
    output_stream = open(self.output_file, "w")
    output_stream.write(code_str)
    output_stream.close()
    if self.debug_flag:
      Log.report(Log.Verbose, "Generating Debug code in {}".format(self.debug_file))
      debug_code_str = self.debug_code_object.get(None)
      debug_stream = open(self.debug_file, "w")
      debug_stream.write(debug_code_str)
      debug_stream.close()


  def gen_implementation(self,
			display_after_gen = False,
			display_after_opt = False,
			enable_subexpr_sharing = True
		):
    ## apply @p pass_object optimization pass
    #  to the scheme of each entity in code_entity_list
    def entity_execute_pass(scheduler, pass_object, code_entity_list):
      for code_entity in code_entity_list:
        entity_scheme = code_entity.get_scheme()
        processed_scheme = pass_object.execute(entity_scheme)
        # todo check pass effect
        # code_entity.set_scheme(processed_scheme)
      return code_entity_list

    # generate scheme
    code_entity_list = self.generate_entity_list()

    Log.report(Log.Info, "Applying passes at start of generation")
    code_entity_list = self.pass_scheduler.get_full_execute_from_slot(
      code_entity_list,
      PassScheduler.Start,
      entity_execute_pass
    )

    # defaulting pipeline stage to None
    self.implementation.set_current_stage(None)

    Log.report(Log.Info, "Applying passes just before pipelining")
    code_entity_list = self.pass_scheduler.get_full_execute_from_slot(
      code_entity_list,
      PassScheduler.BeforePipelining,
      entity_execute_pass
    )

    if self.pipelined:
        self.stage_num = generate_pipeline_stage(
            self, reset=self.reset_pipeline,
            recirculate=self.recirculate_pipeline,
            synchronous_reset=self.synchronous_reset,
            negate_reset=self.negate_reset)
    else:
        self.stage_num = 1
    Log.report(Log.Info, "there is/are {} pipeline stage(s)".format(self.stage_num))

    Log.report(Log.Info, "Applying passes just after pipelining")
    code_entity_list = self.pass_scheduler.get_full_execute_from_slot(
      code_entity_list,
      PassScheduler.AfterPipelining,
      entity_execute_pass
    )

    # stage duration (in ns)
    time_step = 10

    if self.auto_test_enable:
      code_entity_list += self.generate_auto_test(
				test_num = self.auto_test_number if self.auto_test_number else 0,
				test_range = self.auto_test_range,
                time_step = time_step
			)


    for code_entity in code_entity_list:
      scheme = code_entity.get_scheme()
      if display_after_gen or self.display_after_gen:
        print("function %s, after gen " % code_entity.get_name())
        print(scheme.get_str(depth = None, display_precision = True, memoization_map = {}))

      # optimize scheme
      opt_scheme = self.optimise_scheme(scheme, enable_subexpr_sharing = enable_subexpr_sharing)

      if display_after_opt or self.display_after_opt:
        print("function %s, after opt " % code_entity.get_name())
        print(scheme.get_str(depth = None, display_precision = True, memoization_map = {}))


    Log.report(Log.Info, "Applying passes just before codegen")
    code_entity_list = self.pass_scheduler.get_full_execute_from_slot(
      code_entity_list,
      PassScheduler.JustBeforeCodeGen,
      entity_execute_pass
    )

    # generate VHDL code to implement scheme
    self.generate_code(code_entity_list, language = self.language)

    if self.simulator == "vsim":
        simulation = ModelsimSimulation([self.output_file], self.debug_file)
    elif self.simulator == "ghdl":
        simulation = GHDLSimulation([self.output_file])
    else:
        Log.report(Log.Error, "unknown RTL elab and simulation tool: {}", self.simulator)

    if self.execute_trigger:
      test_delay = time_step * (self.stage_num + 2) * (self.auto_test_number + (len(self.standard_test_cases) if self.auto_test_std else 0) + 100) 
      sim_result = simulation.elab_and_run(test_delay, debug=self.debug_flag, exit_after_test=self.exit_after_test)
      # rtl elaboration
      if sim_result:
        Log.report(Log.Error, "simulation failed [{}]".format(sim_result))
      else:
        Log.report(Log.Info, "simulation success")

    elif self.build_enable:
      elab_result = simulation.elab(self.entity_name)
      if elab_result:
        Log.report(Log.Error, "failed to elaborate [{}]".format(elab_result))
      else:
        Log.report(Log.Info, "elaboration success")


  # Currently mostly empty, to be populated someday
  def gen_emulation_code(self, precode, code, postcode):
    """generate C code that emulates the function, typically using MPFR.
    precode is declaration code (before the test loop)
    postcode is clean-up code (after the test loop)
    Takes the input and output names from input_list and output_list.
    Must postfix output names with "ref_", "ref_ru_", "ref_rd_"

    This class method performs commonly used initializations.
    It initializes the MPFR versions of the inputs and outputs,
    with the same names prefixed with "mp" and possibly postfixed with "rd" and "ru".

    It should be overloaded by actual metafunctions, and called by the overloading function. 
    """

  ## provide numeric evaluation of the main function on @p input_value
  def numeric_emulate(self, input_value):
    raise NotImplementedError

  def generate_test_case(self, input_signals, io_map, index, test_range = Interval(-1.0, 1.0)):
    """ generic test case generation: generate a random input
        with index @p index

        Args:
            index (int): integer index of the test case

        Returns:
            dict: mapping (input tag -> numeric value)
    """
    # extracting test interval boundaries
    low_input = sollya.inf(test_range)
    high_input = sollya.sup(test_range)
    input_values = {}
    for input_tag in input_signals:
        input_signal = io_map[input_tag]
        # FIXME: correct value generation depending on signal precision
        input_precision = input_signal.get_precision().get_base_format()
        if isinstance(input_precision, ML_FP_Format):
            input_value = generate_random_fp_value(input_precision, low_input, high_input)
        elif isinstance(input_precision, ML_Fixed_Format):
            # TODO: does not depend on low and high range bounds
            input_value = generate_random_fixed_value(input_precision)
        else: 
            input_value = random.randrange(2**input_precision.get_bit_size())
        # registering input value
        input_values[input_tag] = input_value
    return input_values

  def init_test_generator(self):
    """ Generic initialization of test case generator """
    return

  def implement_test_case(self, io_map, input_values, output_signals,
                          output_values, time_step, index=None):
      """ Implement the test case check and assertion whose I/Os values
          are described in input_values and output_values dict

          :param index: index of the corresponding test case (to be displayed as info) 
      """
      test_statement = Statement()
      input_msg = ""
      # Adding input setting
      for input_tag in input_values:
        input_signal = io_map[input_tag]
        # FIXME: correct value generation depending on signal precision
        input_value = input_values[input_tag]
        test_statement.add(get_input_assign(input_signal, input_value))
        input_msg += get_input_msg(input_tag, input_signal, input_value)

      test_statement.add(Wait(time_step * (self.stage_num + 2)))

      # Adding output value comparison
      for output_tag in output_signals:
        output_signal = output_signals[output_tag]
        output_value = output_values[output_tag]
        output_cst_value  = Constant(output_value, precision=output_signal.get_precision())

        value_msg = get_output_value_msg(output_signal, output_value)
        test_pass_cond, check_statement = get_output_check_statement(output_signal, output_tag, output_cst_value)

        test_statement.add(check_statement)
        assert_statement = Assert(
          test_pass_cond,
          "\"unexpected value for {test_id}, inputs {input_msg}, output {output_tag}, expecting {value_msg}, got: \"".format(input_msg = input_msg, output_tag = output_tag, value_msg = value_msg, test_id=("" if index is None else "test #{}".format(index))),
          severity = Assert.Failure
        )
        test_statement.add(assert_statement)
      return test_statement

  def get_input_signal_map(self, io_map):
    # map of input_tag -> input_signal, excludind commodity signals
    # (e.g. clock and reset)
    input_signals = {}
    reduced_arg_list = self.implementation.get_arg_list()
    for input_port in reduced_arg_list:
      input_tag = input_port.get_tag()
      input_signal = Signal(input_tag + "_i", precision = input_port.get_precision(), var_type = Signal.Local)
      io_map[input_tag] = input_signal
      # excluding clk, reset and recirculate signals
      if not input_tag in ["clk", self.reset_name] + [sig.get_tag() for sig in self.recirculate_signal_map.values()]:
        input_signals[input_tag] = input_signal
    return input_signals

  def get_output_signal_map(self, io_map):
    """ generate map of output signals """
    # map of output_tag -> output_signal
    output_signals = {}
    # excluding clock and reset signals from argument list
    for output_port in self.implementation.get_output_port():
      output_tag = output_port.get_tag()
      output_signal = Signal(
        output_tag + "_o",
        precision=output_port.get_precision(),
        var_type=Signal.Local
      )
      io_map[output_tag] = output_signal
      output_signals[output_tag] = output_signal
    return output_signals


  def generate_datafile_testbench(self, tc_list, io_map, input_signals, output_signals, time_step, test_fname="test.input"):
    """ Generate testbench with input and output data externalized in
        a data file """
    # textio function to read hexadecimal text
    def FCT_HexaRead_gen(input_format):
        legalized_input_format = input_format
        FCT_HexaRead = FunctionObject("hread", [HDL_LINE, legalized_input_format], ML_Void, FunctionOperator("hread", void_function=True, arity=2))
        return FCT_HexaRead
    # textio function to read binary text
    FCT_Read = FunctionObject("read", [HDL_LINE, ML_StdLogic], ML_Void, FunctionOperator("read", void_function=True, arity=2))
    input_line = Variable("input_line", precision=HDL_LINE, var_type=Variable.Local)

    # building ordered list of input and output signal names
    input_signal_list = [sname for sname in input_signals.keys()]
    input_statement = Statement()
    for input_name in input_signal_list:
        input_format = input_signals[input_name].precision
        input_var = Variable(
            "v_" + input_name,
            precision=input_format,
            var_type=Variable.Local)
        if input_format is ML_StdLogic:
            input_statement.add(FCT_Read(input_line, input_var))
        else:
            input_statement.add(FCT_HexaRead_gen(input_format)(input_line, input_var))
        input_statement.add(ReferenceAssign(input_signals[input_name], input_var))

    output_signal_list = [sname for sname in output_signals.keys()]
    output_statement = Statement()
    for output_name in output_signal_list:
        output_format = output_signals[output_name].precision
        output_var = Variable(
            "v_" + output_name,
            precision=output_format,
            var_type=Variable.Local)
        if output_format is ML_StdLogic:
            output_statement.add(FCT_Read(input_line, output_var))
        else:
            output_statement.add(FCT_HexaRead_gen(output_format)(input_line, output_var))

        output_signal = output_signals[output_name]
        #value_msg = get_output_value_msg(output_signal, output_value)
        test_pass_cond, check_statement = get_output_check_statement(output_signal, output_name, output_var)

        input_msg = multi_Concatenation(*tuple(sum([[" %s=" % input_tag, signal_str_conversion(input_signals[input_tag], input_signals[input_tag].precision)] for input_tag in input_signal_list], [])))

        output_statement.add(check_statement)
        assert_statement = Assert(
            test_pass_cond,
            multi_Concatenation(
                "unexpected value for inputs ",
                input_msg,
                " expecting :",
                signal_str_conversion(output_var, output_format),
                " got :",
                signal_str_conversion(output_signal, output_format),
               precision = ML_String
            ),
            severity=Assert.Failure
        )
        output_statement.add(assert_statement)

    self_component = self.implementation.get_component_object()
    self_instance = self_component(io_map = io_map, tag = "tested_entity")
    test_statement = Statement()

    DATA_FILE_NAME = test_fname

    with open(DATA_FILE_NAME, "w") as data_file:
        # dumping column tags
        data_file.write("# " + " ".join(input_signal_list + output_signal_list) + "\n")

        def get_raw_cst_string(cst_format, cst_value):
            size = int((cst_format.get_bit_size() + 3) / 4)
            return ("{:x}").format(cst_format.get_base_format().get_integer_coding(cst_value)).zfill(size)

        for input_values, output_values in tc_list:
            # TODO; generate test data file
            cst_list = []
            for input_name in input_signal_list:
                input_value = input_values[input_name]
                input_format = input_signals[input_name].get_precision()
                cst_list.append(get_raw_cst_string(input_format, input_value))

            for output_name in output_signal_list:
                output_value = output_values[output_name]
                output_format = output_signals[output_name].get_precision()
                cst_list.append(get_raw_cst_string(output_format, output_value))
            # dumping line into file
            data_file.write(" ".join(cst_list) + "\n")

    input_stream = Variable("data_file", precision=HDL_FILE, var_type=Variable.Local)
    file_status = Variable("file_status", precision=HDL_OPEN_FILE_STATUS, var_type=Variable.Local)
    FCT_EndFile = FunctionObject("endfile", [HDL_FILE], ML_Bool, FunctionOperator("endfile", arity=1)) 
    FCT_OpenFile = FunctionObject(
        "FILE_OPEN", [HDL_OPEN_FILE_STATUS, HDL_FILE, ML_String], ML_Void,
        FunctionOperator(
            "FILE_OPEN",
            arg_map={0: FO_Arg(0), 1: FO_Arg(1), 2: FO_Arg(2), 3: "READ_MODE"},
            void_function=True))
    FCT_ReadLine =  FunctionObject(
        "readline", [HDL_FILE, HDL_LINE], ML_Void,
        FunctionOperator("readline", void_function=True, arity=2))

    reset_statement = self.get_reset_statement(io_map, time_step)
    OPEN_OK = Constant("OPEN_OK", precision=HDL_OPEN_FILE_STATUS)

    testbench = CodeEntity("testbench")
    test_process = Process(
        reset_statement,
        FCT_OpenFile(file_status, input_stream, DATA_FILE_NAME),
        ConditionBlock(
            Comparison(file_status, OPEN_OK, specifier=Comparison.NotEqual),
          Assert(
            Constant(0, precision=ML_Bool),
            " \"failed to open file {}\"".format(DATA_FILE_NAME),
            severity=Assert.Failure
          )
        ),
        # consume legend line
        FCT_ReadLine(input_stream, input_line),
        WhileLoop(
            LogicalNot(FCT_EndFile(input_stream)),
            Statement(
                FCT_ReadLine(input_stream, input_line),
                input_statement,
                Wait(time_step * (self.stage_num + 2)),
                output_statement,
            ),
        ),
      # end of test
      Assert(
        Constant(0, precision = ML_Bool),
        " \"end of test, no error encountered \"",
        severity = Assert.Warning
      ),
      # infinite end loop
        WhileLoop(
            Constant(1, precision=ML_Bool),
            Statement(
                Wait(time_step * (self.stage_num + 2)),
            )
        )
    )

    testbench_scheme = Statement(
      self_instance,
      test_process
    )

    if self.pipelined:
        half_time_step = time_step / 2
        assert (half_time_step * 2) == time_step
        # adding clock process for pipelined bench
        clk_process = Process(
            Statement(
                ReferenceAssign(
                    io_map["clk"],
                    Constant(1, precision = ML_StdLogic)
                ),
                Wait(half_time_step),
                ReferenceAssign(
                    io_map["clk"],
                    Constant(0, precision = ML_StdLogic)
                ),
                Wait(half_time_step),
            )
        )
        testbench_scheme.push(clk_process)

    testbench.add_process(testbench_scheme)

    return [testbench]

  def generate_auto_test(self, test_num = 10, test_range = Interval(-1.0, 1.0), debug = False, time_step = 10):
    """ time_step: duration of a stage (in ns) """
    # instanciating tested component
    # map of input_tag -> input_signal and output_tag -> output_signal
    io_map = {}

    # map of input_tag -> input_signal, excludind commodity signals
    # (e.g. clock and reset)
    input_signals = self.get_input_signal_map(io_map)
    # map of output_tag -> output_signal
    output_signals = self.get_output_signal_map(io_map)

    # building list of test cases
    tc_list = []


    # initializing random test case generator
    self.init_test_generator()

    # Appending standard test cases if required
    if self.auto_test_std:
      tc_list += self.standard_test_cases

    for i in range(test_num):
      input_values = self.generate_test_case(input_signals, io_map, i, test_range)
      tc_list.append((input_values,None))

    def compute_results(tc):
        """ update test case with output values if required """
        input_values, output_values = tc
        if output_values is None:
            return input_values, self.numeric_emulate(input_values)
        else:
            return tc

    # filling output values
    tc_list = [compute_results(tc) for tc in tc_list]
    if self.externalized_test_data:
        return self.generate_datafile_testbench(tc_list, io_map, input_signals, output_signals, time_step, test_fname=self.externalized_test_data)
    else:
        return self.generate_embedded_testbench(tc_list, io_map, input_signals, output_signals, time_step)

  def get_reset_statement(self, io_map, time_step):
    reset_statement = Statement()
    if self.reset_pipeline:
        # TODO: fix pipeline register reset
        reset_value = 0 if self.negate_reset else 1
        unreset_value = 1 - reset_value
        reset_signal = io_map[self.reset_name]
        reset_statement.add(ReferenceAssign(reset_signal, Constant(reset_value, precision=ML_StdLogic)))
        # to account for synchronous reset
        reset_statement.add(Wait(time_step * 3))
        reset_statement.add(ReferenceAssign(reset_signal, Constant(unreset_value, precision=ML_StdLogic)))
        reset_statement.add(Wait(time_step * 3))
        for recirculate_signal in self.recirculate_signal_map.values():
            reset_statement.add(ReferenceAssign(io_map[recirculate_signal.get_tag()], Constant(0, precision=ML_StdLogic)))
    return reset_statement

  def generate_embedded_testbench(self, tc_list, io_map, input_signals, output_signals, time_step, test_fname="test.input"):
    """ Generate testbench with embedded input and output data """
    self_component = self.implementation.get_component_object()
    self_instance = self_component(io_map = io_map, tag = "tested_entity")
    test_statement = Statement()

    for index, (input_values, output_values) in enumerate(tc_list):
      test_statement.add(
          self.implement_test_case(io_map, input_values, output_signals, output_values, time_step, index=index)
      )

    reset_statement = self.get_reset_statement(io_map, time_step)

    testbench = CodeEntity("testbench")
    test_process = Process(
      reset_statement,
      test_statement,
      # end of test
      Assert(
        Constant(0, precision = ML_Bool),
        " \"end of test, no error encountered \"",
        severity = Assert.Warning
      ),
      # infinite end loop
        WhileLoop(
            Constant(1, precision=ML_Bool),
            Statement(
                Wait(time_step * (self.stage_num + 2)),
            )
        )
    )

    testbench_scheme = Statement(
      self_instance,
      test_process
    )

    if self.pipelined:
        half_time_step = time_step / 2
        assert (half_time_step * 2) == time_step
        # adding clock process for pipelined bench
        clk_process = Process(
            Statement(
                ReferenceAssign(
                    io_map["clk"],
                    Constant(1, precision = ML_StdLogic)
                ),
                Wait(half_time_step),
                ReferenceAssign(
                    io_map["clk"],
                    Constant(0, precision = ML_StdLogic)
                ),
                Wait(half_time_step),
            )
        )
        testbench_scheme.push(clk_process)

    testbench.add_process(testbench_scheme)

    return [testbench]

  @staticmethod
  def get_name():
    return ML_EntityBasis.function_name

  # list of input to be used for standard test validation
  standard_test_cases = []