parser.add_argument("--expression_folder", help="Folder with predicted gene expressions. (plain text file format)") parser.add_argument("--expression_pattern", help="Patterns to select expression files", default=None) parser.add_argument("--input_phenos_file", help="Text file (or gzip-compressed) where one column will be used as phenotype") parser.add_argument("--simulation_type", help="What kind of genotype to simulate: [random, combination, simple]") parser.add_argument("--output_prefix", help="File where stuff will be saved.") parser.add_argument("--verbosity", help="Log verbosity level. 1 is everything being logged. 10 is only high level messages, above 10 will hardly log anything", default = "10") parser.add_argument("--throw", action="store_true", help="Throw exception on error", default=False) parser.add_argument("--code_999", help="values of -999 in expression are to be ignored", action="store_true", default=False) parser.add_argument("--mode", help="Type of regression. Can be: {}".format(MultiPrediXcanAssociation.MTPMode.K_MODES), default=MultiPrediXcanAssociation.MTPMode.K_LINEAR) parser.add_argument("--pc_condition_number", help="Principal components condition number", type=int) parser.add_argument("--pc_eigen_ratio", help="Principal components filter, cutoff at proportion to max eigenvalue", type=float) parser.add_argument("--standardize_expression", help="Standardise input predicted expressions.", action="store_true", default=False) parser.add_argument("--only_truth", help="Run Multi-PrediXcan only with selected causal models.", action="store_true", default=False) parser.add_argument("--simulation_parameters", help="Depends on particular scheme", action="append", nargs=2) parser.add_argument("--do_predixcan", help="Also compute predixcan association", action="store_true", default=False) parser.add_argument("--max_n_results", help="Optional. If provided, run up to as many analysis", type=int) args = parser.parse_args() Logging.configureLogging(int(args.verbosity)) if args.throw: run(args) else: try: run(args) except Exceptions.ReportableException as e: logging.error(e.msg) except Exception as e: logging.info("Unexpected error: %s" % str(e))
import argparse parser = argparse.ArgumentParser( description= 'PrediXcanAssociation.py %s: Single-Tissue PrediXcan association' % (metax.__version__)) add_arguments(parser) parser.add_argument( "--verbosity", help= "Log verbosity level. 1 is everything being logged. 10 is only high level messages, above 10 will hardly log anything", default=10) parser.add_argument("--throw", action="store_true", help="Throw exception on error", default=False) args = parser.parse_args() Logging.configureLogging(int(args.verbosity)) if args.throw: run(args) else: try: run(args) except Exceptions.ReportableException as e: logging.error(e.msg) except Exception as e: logging.info("Unexpected error: %s" % str(e))
for i, gene in enumerate(data.columns.values[2:]): p[i, :] = data[gene].to_numpy() g[i] = np.string_(gene) logging.info("saving samples") s = f.create_dataset("samples", (n_samples, ), dtype="S25") for i in xrange(0, n_samples): s[i] = np.string_(data["IID"][i]) f.close() logging.info("Done") if __name__ == "__main__": import argparse parser = argparse.ArgumentParser("""Convert expression text file to HDF5. WARNING: h5py _cache has been deprecated. Input format should be a tab-separated text file like so: FID IID GENE1 GENE2 ... I1 I1 0.1 0.2 ... I2 I2 0.0 -0.1 ... .... """) parser.add_argument( "--input", default="Text file with predicted transcriptomic trait") parser.add_argument("--output") parser.add_argument("--verbosity", default=logging.INFO, type=int) args = parser.parse_args() Logging.configureLogging(args.verbosity) run(args)
help="exclude some genes from a mystical list.", action="store_true", default=False) parser.add_argument("--gene_digest_file", help="path of gene information digest", default="data/gencode.v18.genes.patched_contigs.summary.protein") parser.add_argument("--predixcan_file", help="name of PrediXcan results in data folder", default="data/PrediXcan_T1D_DGNWholeBlood_EN0.5.txt") parser.add_argument("--zscore_file", help="File with zscore results in results folder", default='results/zscores.csv') parser.add_argument("--output", help="File with merged zscore and predixcan results", default="results/T1DWB_predixcan_zscore.csv") parser.add_argument("--save_error_proxy", help="Output beta error proxy", action="store_true", default=False) args = parser.parse_args() Logging.configureLogging(logging.INFO) work = PostProcessData(args) work.run()
continue var = numpy.var(snp.data, ddof=1) line = ",".join([snp.name, str(float(var))])+"\n" file.write(line) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description='Build variances from PHASE3 data and weights database.') parser.add_argument("--weight_db", help="name of weight db in data folder") #,default="data_folder/DGN-WB_0.5.db") parser.add_argument("--phase_folder", help="name of folder containing PHASE 3 data", default="intermediate/TGF_EUR") parser.add_argument("--output_file", help="name of folder to dump results in", default="intermediate/var/var.txt.gz") args = parser.parse_args() Logging.configureLogging(7) work = CalculateVariances(args) work.run()
def post_process(study, reference): command = "PostProcessData.py" command += " --predixcan_file " + PREDIXCAN[study] command += " --zscore_file " + zscore_path(study, reference) command += " --output " + predixcan_zscore_path(study, reference) command += " --save_error_proxy" logging.log(9, command) call(command.split()) # def plot(study, reference): command = "Rscript PlotValuesWithSamples.R" command += " --zscore_file " + zscore_path(study, reference).split(".csv")[0] command += " --predixcan_file " + predixcan_zscore_path(study, reference).split(".csv")[0] logging.log(9, command) call(command.split()) def run(): for reference in REF_POP: for study in STUDY_POP: zscore(study, reference) post_process(study,reference) #plot(study, reference) if __name__ == "__main__": Logging.configureLogging(9) run()
continue var = numpy.var(snp.data, ddof=1) line = ",".join([snp.name, str(float(var))]) + "\n" file.write(line) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser( description='Build variances from PHASE3 data and weights database.') parser.add_argument("--weight_db", help="name of weight db in data folder") #,default="data_folder/DGN-WB_0.5.db") parser.add_argument("--phase_folder", help="name of folder containing PHASE 3 data", default="intermediate/TGF_EUR") parser.add_argument("--output_file", help="name of folder to dump results in", default="intermediate/var/var.txt.gz") args = parser.parse_args() Logging.configureLogging(7) work = CalculateVariances(args) work.run()