Example #1
0
def _weather_data_extraction(lat, lon):
    start = datetime(2015, 1, 1)
    end = datetime(2021, 1, 16)

    stations = Stations()
    stations = stations.nearby(lat, lon)
    stations = stations.inventory('daily', (start, end))
    station = stations.fetch(1)

    data = Daily(station, start, end)
    data = data.fetch()

    return data
Example #2
0
"""
Example: Closest weather station by coordinates

Meteorological data provided by Meteostat (https://dev.meteostat.net)
under the terms of the Creative Commons Attribution-NonCommercial
4.0 International Public License.

The code is licensed under the MIT license.
"""

from meteostat import Stations

# Get weather station
stations = Stations()
stations = stations.nearby(50, 8)
stations = stations.inventory('hourly', True)
station = stations.fetch(1).to_dict('records')[0]

# Print name
print('Closest weather station at coordinates 50, 8:', station["name"])
Example #3
0
from datetime import datetime
import matplotlib.pyplot as plt
from meteostat import Stations, Daily

# Configuration
Daily.max_threads = 5

# Time period
start = datetime(1980, 1, 1)
end = datetime(2019, 12, 31)

# Get random weather stations in the US
stations = Stations()
stations = stations.region('US')
stations = stations.inventory('daily', (start, end))
stations = stations.fetch(limit=20, sample=True)

# Get daily data
data = Daily(stations, start, end)

# Normalize & aggregate
data = data.normalize().aggregate('1Y', spatial=True).fetch()

# Chart title
TITLE = 'Average US Annual Temperature from 1980 to 2019'

# Plot chart
data.plot(y=['tavg'], title=TITLE)
plt.show()