Example #1
0
    def __init__(self,
                 num_input,
                 num_hidden,
                 input_layers=None,
                 name="",
                 go_backwards=False):
        """
        MGU Layer from 周志华paper
        Takes as input sequence of inputs, returns sequence of outputs
        """
        self.name = name
        self.num_input = num_input
        self.num_hidden = num_hidden

        if len(input_layers) >= 2:
            # axis=1  an row xiang jia
            self.X = T.concatenate(
                [input_layer.output() for input_layer in input_layers], axis=1)
        else:
            self.X = input_layers[0].output()

        self.h0 = theano.shared(floatX(np.zeros(num_hidden)))
        self.s0 = theano.shared(floatX(np.zeros(num_hidden)))

        self.go_backwards = go_backwards

        self.W_fx = random_weights((num_input, num_hidden),
                                   name=self.name + "W_fx")
        self.W_fh = random_weights((num_hidden, num_hidden),
                                   name=self.name + "W_fh")
        self.U_h = random_weights((num_input, num_hidden),
                                  name=self.name + "U_h")
        self.W_h = random_weights((num_hidden, num_hidden),
                                  name=self.name + "W_h")

        self.b_f = zeros(num_hidden, name=self.name + "b_f")
        self.b_h = zeros(num_hidden, name=self.name + "b_h")

        self.params = [self.W_fx, self.W_fh, self.b_f]
        self.output()
Example #2
0
    def __init__(self,
                 num_input,
                 num_hidden,
                 input_layers=None,
                 name="",
                 go_backwards=False):

        self.name = name
        self.num_input = num_input
        self.num_hidden = num_hidden

        if len(input_layers) >= 2:
            self.X = T.concatenate(
                [input_layer.output() for input_layer in input_layers], axis=1)
        else:
            self.X = input_layers[0].output()

        self.h0 = theano.shared(floatX(np.zeros(num_hidden)))
        self.s0 = theano.shared(floatX(np.zeros(num_hidden)))

        self.go_backwards = go_backwards

        self.W_gx = random_weights((num_input, num_hidden),
                                   name=self.name + "W_gx")
        self.W_ix = random_weights((num_input, num_hidden),
                                   name=self.name + "W_ix")
        self.W_fx = random_weights((num_input, num_hidden),
                                   name=self.name + "W_fx")
        self.W_ox = random_weights((num_input, num_hidden),
                                   name=self.name + "W_ox")

        self.W_gh = random_weights((num_hidden, num_hidden),
                                   name=self.name + "W_gh")
        self.W_ih = random_weights((num_hidden, num_hidden),
                                   name=self.name + "W_ih")
        self.W_fh = random_weights((num_hidden, num_hidden),
                                   name=self.name + "W_fh")
        self.W_oh = random_weights((num_hidden, num_hidden),
                                   name=self.name + "W_oh")

        self.b_g = zeros(num_hidden, name=self.name + "b_g")
        self.b_i = zeros(num_hidden, name=self.name + "b_i")
        self.b_f = zeros(num_hidden, name=self.name + "b_f")
        self.b_o = zeros(num_hidden, name=self.name + "b_o")

        self.params = [
            self.W_gx,
            self.W_ix,
            self.W_ox,
            self.W_fx,
            self.W_gh,
            self.W_ih,
            self.W_oh,
            self.W_fh,
            self.b_g,
            self.b_i,
            self.b_f,
            self.b_o,
        ]

        self.output()
Example #3
0
 def reset_state(self):
     self.h0 = theano.shared(floatX(np.zeros(self.num_hidden)))
     self.s0 = theano.shared(floatX(np.zeros(self.num_hidden)))