Example #1
0
def search_threshold(mask, pred):
    best_score = 0
    best_th = 0
    count = 0
    results = []
    ths = np.linspace(0, 1, 101)

    for th in ths:
        scores = []
        for y_val_, y_pred_ in zip(mask, pred):
            score = dice(y_val_, y_pred_ > th)
            if np.isnan(score):
                scores.append(1)
            else:
                scores.append(score)
        if np.mean(scores) > best_score:
            best_score = np.mean(scores)
            best_th = th
            count = 0
        results.append(np.mean(scores))

        if np.mean(scores) < best_score:
            count += 1
        #if count == 50:
        #    break
    #results = results + [0 for _ in range(len(ths) - len(results))]

    return best_th, best_score, ths, results
            t /= 100
            for ms in [5000, 10000, 15000, 20000, 25000, 27000]:
                masks = []
                for i in range(class_id, len(probabilities), 4):
                    probability = probabilities[i]
                    predict, num_predict = post_process(sigmoid(probability),
                                                        t,
                                                        ms,
                                                        size=size)
                    masks.append(predict)
                d = []
                for i, j in zip(masks, valid_masks[class_id::4]):
                    if (i.sum() == 0) & (j.sum() == 0):
                        d.append(1)
                    else:
                        d.append(dice(i, j))
                attempts.append((t, ms, np.mean(d)))

        attempts_df = pd.DataFrame(attempts,
                                   columns=['threshold', 'size', 'dice'])

        attempts_df = attempts_df.sort_values('dice', ascending=False)
        print(attempts_df.head())
        best_threshold = attempts_df['threshold'].values[0]
        best_size = attempts_df['size'].values[0]

        class_params[class_id] = (best_threshold, best_size)

    del probabilities

    with open(output_name + "_params.pkl", 'wb') as handle:
Example #3
0
def main(seed):
    with timer('load data'):
        df = pd.read_csv(FOLD_PATH)

    with timer('preprocessing'):
        val_df = df[df.fold_id == FOLD_ID]

        val_augmentation = None
        val_dataset = SeverDataset(val_df,
                                   IMG_DIR,
                                   IMG_SIZE,
                                   N_CLASSES,
                                   id_colname=ID_COLUMNS,
                                   transforms=val_augmentation)
        val_loader = DataLoader(val_dataset,
                                batch_size=BATCH_SIZE,
                                shuffle=False,
                                num_workers=8)

        del val_df, df, val_dataset
        gc.collect()

    with timer('create model'):
        model = smp.Unet('resnet34',
                         encoder_weights="imagenet",
                         classes=N_CLASSES,
                         encoder_se_module=True,
                         decoder_semodule=True,
                         h_columns=False,
                         skip=True,
                         act="swish",
                         freeze_bn=True,
                         classification=CLASSIFICATION,
                         attention_type="cbam")
        model.load_state_dict(torch.load(base_model))
        model.to(device)

        criterion = torch.nn.BCEWithLogitsLoss()

    with timer('predict'):
        valid_loss, y_pred, y_true, cls = predict(
            model,
            val_loader,
            criterion,
            device,
            classification=CLASSIFICATION)
        LOGGER.info('Mean valid loss: {}'.format(round(valid_loss, 5)))

        scores = []
        for i, (th, remove_mask_pixel) in enumerate(zip(ths, remove_pixels)):
            sum_val_preds = np.sum(
                y_pred[:, i, :, :].reshape(len(y_pred), -1) > th, axis=1)
            cls_ = cls[:, i]

            best = 0
            for th_cls in np.linspace(0, 1, 101):
                val_preds_ = copy.deepcopy(y_pred[:, i, :, :])
                val_preds_[sum_val_preds < remove_mask_pixel] = 0
                val_preds_[cls_ <= th_cls] = 0
                scores = []
                for y_val_, y_pred_ in zip(y_true[:, i, :, :], val_preds_):
                    score = dice(y_val_, y_pred_ > 0.5)
                    if np.isnan(score):
                        scores.append(1)
                    else:
                        scores.append(score)
                if np.mean(scores) >= best:
                    best = np.mean(scores)
                    best_th = th_cls
                else:
                    break
            LOGGER.info('dice={} on {}'.format(best, best_th))
            scores.append(best)

        LOGGER.info('holdout dice={}'.format(np.mean(scores)))
Example #4
0
def main(seed):
    with timer('load data'):
        df = pd.read_csv(FOLD_PATH)
        if N_CLASSES == 3:
            df.drop("EncodedPixels_2", axis=1, inplace=True)
            df = df.rename(columns={"EncodedPixels_3": "EncodedPixels_2"})
            df = df.rename(columns={"EncodedPixels_4": "EncodedPixels_3"})

    with timer('preprocessing'):
        val_df = df[df.fold_id == FOLD_ID]

        val_augmentation = None
        val_dataset = SeverDataset(val_df, IMG_DIR, IMG_SIZE, N_CLASSES, id_colname=ID_COLUMNS,
                                  transforms=val_augmentation)
        val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=8)

        del val_df, df, val_dataset
        gc.collect()

    with timer('create model'):
        model = smp_old.Unet('resnet34', encoder_weights="imagenet", classes=N_CLASSES, encoder_se_module=True,
                         decoder_semodule=True, h_columns=False, skip=True, act="swish", freeze_bn=True,
                         classification=CLASSIFICATION)
        model.load_state_dict(torch.load(base_model))
        model.to(device)
        model.eval()

        criterion = torch.nn.BCEWithLogitsLoss()

    with timer('predict'):
        valid_loss, y_pred, y_true, cls = predict(model, val_loader, criterion, device, classification=CLASSIFICATION)
        LOGGER.info('Mean valid loss: {}'.format(round(valid_loss, 5)))

        scores = []
        all_scores = []
        min_sizes = [300, 0, 600, 1600]
        for i in range(N_CLASSES):
            if i == 1:
                continue
            best = 0
            count = 0
            min_size = min_sizes[i]
            for th in [0.7+i*0.01 for i in range(30)]:
                val_preds_ = copy.deepcopy(y_pred[:, i, :, :])
                scores_ = []
                all_scores_ = []
                for y_val_, y_pred_ in zip(y_true[:, i, :, :], val_preds_):
                    y_pred_ = post_process(y_pred_ > 0.5, y_pred_, min_size, th)
                    score = dice(y_val_, y_pred_)
                    if np.isnan(score):
                        scores_.append(1)
                    else:
                        scores_.append(score)
                LOGGER.info('dice={} on {}'.format(np.mean(scores_), th))
                if np.mean(scores_) >= best:
                    best = np.mean(scores_)
                    count = 0
                else:
                    count += 1
                if count == 3:
                    break
            scores.append(best)
            all_scores.append(all_scores_)

        LOGGER.info('holdout dice={}'.format(np.mean(scores)))
Example #5
0
def main(seed):
    with timer('load data'):
        df = pd.read_csv(FOLD_PATH)
        y1 = (df.EncodedPixels_1 != "-1").astype("float32").values.reshape(-1, 1)
        y2 = (df.EncodedPixels_2 != "-1").astype("float32").values.reshape(-1, 1)
        y3 = (df.EncodedPixels_3 != "-1").astype("float32").values.reshape(-1, 1)
        y4 = (df.EncodedPixels_4 != "-1").astype("float32").values.reshape(-1, 1)
        y = np.concatenate([y1, y2, y3, y4], axis=1)

    with timer('preprocessing'):
        val_df = df[df.fold_id == FOLD_ID]
        y_val = y[df.fold_id == FOLD_ID]

        val_dataset = SeverCLSDataset(val_df, IMG_DIR, IMG_SIZE, N_CLASSES, y_val, id_colname=ID_COLUMNS,
                                      transforms=None)
        val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=8, pin_memory=True)

        models = []

        model = cls_models.SEResNext(num_classes=N_CLASSES)
        model.load_state_dict(torch.load(base_model_cls))
        model.to(device)
        model.eval()
        models.append(model)

        """model = cls_models.ResNet(num_classes=N_CLASSES, pretrained=None)
        model.load_state_dict(torch.load(base_model_res))
        model.to(device)
        model.eval()
        models.append(model)"""

    with timer('predict cls'):
        criterion = torch.nn.BCEWithLogitsLoss()

        valid_loss, y_val, y_true = predict_cls(models, val_loader, criterion, device)
        #y_val = np.load("../exp_cls/y_pred_ema_ckpt8.npy")
        LOGGER.info("val loss={}".format(valid_loss))

    with timer('preprocessing seg'):
        val_augmentation = None
        val_dataset = SeverDataset(val_df, IMG_DIR, IMG_SIZE, N_CLASSES, id_colname=ID_COLUMNS,
                                  transforms=val_augmentation, class_y=y_val)
        val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=8)

        del val_df, df, val_dataset
        gc.collect()

    with timer('create model'):
        model = smp.Unet('resnet34', encoder_weights="imagenet", classes=N_CLASSES, encoder_se_module=True,
                         decoder_semodule=True, h_columns=False, skip=True, act="swish", freeze_bn=True,
                         classification=CLASSIFICATION, attention_type="cbam", center=True)
        model.load_state_dict(torch.load(base_model))
        model.to(device)

        criterion = torch.nn.BCEWithLogitsLoss()

    with timer('predict'):
        valid_loss, y_pred, y_true, cls = predict(model, val_loader, criterion, device, classification=CLASSIFICATION)
        LOGGER.info('Mean valid loss: {}'.format(round(valid_loss, 5)))

        scores = []
        for i, (th, remove_mask_pixel) in enumerate(zip(ths, remove_pixels)):
            if i <= 1:
                continue
            sum_val_preds = np.sum(y_pred[:, i, :, :].reshape(len(y_pred), -1) > th, axis=1)
            cls_ = cls[:, i]

            best = 0
            for th_cls in np.linspace(0, 1, 101):
                val_preds_ = copy.deepcopy(y_pred[:, i, :, :])
                val_preds_[sum_val_preds < remove_mask_pixel] = 0
                val_preds_[cls_ <= th_cls] = 0
                scores = []
                for y_val_, y_pred_ in zip(y_true[:, i, :, :], val_preds_):
                    score = dice(y_val_, y_pred_ > 0.5)
                    if np.isnan(score):
                        scores.append(1)
                    else:
                        scores.append(score)
                if np.mean(scores) >= best:
                    best = np.mean(scores)
                    best_th = th_cls
                #else:
                #    break
            LOGGER.info('dice={} on {}'.format(best, best_th))
            scores.append(best)

        LOGGER.info('holdout dice={}'.format(np.mean(scores)))
Example #6
0
vol += 0.1 * np.random.rand(*vol.shape)
# plt.imshow(vol[25,:,:], cmap='gray')

seg1 = np.zeros((50, 128, 128))
seg1[20:30, 40:88, 40:88] = 1

seg2 = np.zeros((50, 128, 128))
seg2[20:29, 45:95, 45:95] = 1
seg2[29, 40:88, 40:88] = 1

# fig, axs = plt.subplots(1,3)
# axs[0].imshow(np.squeeze(vol[25,:,:]), cmap='gray')
# axs[1].imshow(np.squeeze(seg1[25,:,:]), cmap='gray')
# axs[2].imshow(np.squeeze(seg2[25,:,:]), cmap='gray')

# 1. Processing

#%%
# from jximgtools.metric import dicePerSlice, dice
# from jximgtools.visualization.volSlicer import VolSlicer
from metric import dicePerSlice, dice
from visualization.volSlicer import VolSlicer

# slicesInfo = [{'info':'Slice # {}'.format(sliceIdx+1) for sliceIdx in range(50)}]
dicee = dice(seg1, seg2)
dices = dicePerSlice(seg1, seg2)
volInfo = {'Name': 'Test Volume', 'DicePerSlice': dices}
slicesInfo = [{'Dice': dices[sliceIdx]} for sliceIdx in range(50)]
# VolSlicer(vol, volInfo = volInfo, segs = [seg1, seg2], slicesInfo = slicesInfo)
VolSlicer(vol, volInfo=volInfo, segs=[seg1, seg2])
# VolSlicer(vol)
Example #7
0
def main(seed):
    with timer('load data'):
        df = pd.read_csv(FOLD_PATH)

    with timer('preprocessing'):
        val_df = df[df.fold_id == FOLD_ID]

        val_augmentation = None
        val_dataset = SeverDataset(val_df,
                                   IMG_DIR,
                                   IMG_SIZE,
                                   N_CLASSES,
                                   id_colname=ID_COLUMNS,
                                   transforms=val_augmentation)
        val_loader = DataLoader(val_dataset,
                                batch_size=BATCH_SIZE,
                                shuffle=False,
                                num_workers=8)

        del val_df, df, val_dataset
        gc.collect()

    with timer('create model'):
        models = []
        for p in base_model_res:
            model = smp.Unet('resnet34',
                             encoder_weights="imagenet",
                             classes=N_CLASSES,
                             encoder_se_module=True,
                             decoder_semodule=True,
                             h_columns=False,
                             skip=True,
                             act="swish",
                             freeze_bn=True,
                             classification=CLASSIFICATION,
                             attention_type="cbam",
                             center=True)
            model.load_state_dict(torch.load(p))
            model.to(device)
            model.eval()
            models.append(model)

        model = smp_old.Unet('resnet34',
                             encoder_weights="imagenet",
                             classes=N_CLASSES,
                             encoder_se_module=True,
                             decoder_semodule=True,
                             h_columns=False,
                             skip=True,
                             act="swish",
                             freeze_bn=True,
                             classification=CLASSIFICATION)
        model.load_state_dict(torch.load(base_model_res_old))
        model.to(device)
        model.eval()
        models.append(model)

        criterion = torch.nn.BCEWithLogitsLoss()

    with timer('predict'):
        valid_loss, y_pred, y_true, cls = predict(
            models,
            val_loader,
            criterion,
            device,
            classification=CLASSIFICATION)
        LOGGER.info('Mean valid loss: {}'.format(round(valid_loss, 5)))

        scores = []
        all_scores = []
        for i, th in enumerate(ths):
            sum_val_preds = np.sum(
                y_pred[:, i, :, :].reshape(len(y_pred), -1) > th, axis=1)

            best = 0
            for n_th, remove_mask_pixel in enumerate(
                [200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800]):
                val_preds_ = copy.deepcopy(y_pred[:, i, :, :])
                val_preds_[sum_val_preds < remove_mask_pixel] = 0
                scores_ = []
                all_scores_ = []
                for y_val_, y_pred_ in zip(y_true[:, i, :, :], val_preds_):
                    score = dice(y_val_, y_pred_ > 0.5)
                    if np.isnan(score):
                        scores_.append(1)
                    else:
                        scores_.append(score)
                LOGGER.info('dice={} on {}'.format(np.mean(scores_),
                                                   remove_mask_pixel))
                if np.mean(scores_) >= best:
                    best = np.mean(scores_)
                all_scores_.append(np.mean(scores_))
            scores.append(np.mean(scores_))
            all_scores.append(all_scores_)

        LOGGER.info('holdout dice={}'.format(np.mean(scores)))
        np.save("all_scores_fold{}.npy".format(FOLD_ID), np.array(all_scores))