data_bunch = DataBunch(train_dl=training_loader, valid_dl=validation_loader) # ========================================================================================= classifier = mdl_ResDenHybrid() class SGD_m5(SGD): def __init__(self, *args, **kwargs): super().__init__(momentum=0.5, *args, **kwargs) learn = Learner( data_bunch, classifier, loss_func=Loss_combine_weighted_v2(), opt_func=SGD_m5, metrics=[Metric_grapheme(), Metric_vowel(), Metric_consonant(), Metric_tot()] ) name = 'mdl_ResDenHybrid_sgd_lessaugs_mucm_fixed_raw_onecycle_fld1of5' logger = CSVLogger(learn, name) # ========================================================================================= learn.fit_one_cycle( 160, max_lr=0.05, wd=0.0, pct_start=0.0, div_factor=50., final_div=100.,
# ### model classifier = Simple50GeM() # In[8]: logging_name = 'MG_model_script_ModelMg_SeperateHead_BestAugs_3ChSize128Pad3_OneCycle' learn = Learner(data_bunch, classifier, loss_func=Loss_combine_weighted(), opt_func=Over9000, metrics=[ Metric_grapheme(), Metric_vowel(), Metric_consonant(), Metric_tot() ]) logger = CSVLogger(learn, logging_name) learn.clip_grad = 1.0 # learn.split([classifier.cls]) learn.unfreeze() # In[9]: learn.fit_one_cycle(160, max_lr=1e-2, wd=0., pct_start=0.0,