from sklearn.decomposition import PCA #Mahalanobis - learnt - reduced set pca = PCA(n_components=150) X_train_pca = pca.fit_transform(X_train) X_query_pca = pca.transform(X_query) X_gallery_pca = pca.transform(X_gallery) mmc = MMC_Supervised(max_iter=50) mmc.fit(X_train_pca[0:150], y_train[0:150]) M = mmc.metric() print ('Metric learnt') rank_accuracies, mAP = evaluate_metric(X_query_pca, camId_query, y_query, X_gallery_pca, camId_gallery, y_gallery, metric ='mahalanobis', parameters = M) rank_accuracies_l_2.append(rank_accuracies) mAP_l_2.append(mAP) metric_l_2.append('Learnt Mahalanobis (Red. Set)') # In[24]:
def test_mmc_supervised(self): mmc = MMC_Supervised(num_constraints=200) mmc.fit(self.X, self.y) L = mmc.transformer() assert_array_almost_equal(L.T.dot(L), mmc.metric())