c='k', fname='{}/assemblies{}'.format(results_dir, i / 2)) n_runs = 10 feasibility_func = import_module('{}.feasibility'.format( args.data)).check_feasibility prc_mean, prc_err = ci_prc(n_runs, model.synthesize_assemblies, feasibility_func, n_points) print('Precision for assembly: %.3f +/- %.3f' % (prc_mean, prc_err)) mmd_mean, mmd_err = ci_mmd(n_runs, model.synthesize_assemblies, X_test) rdiv_mean, rdiv_err = ci_rdiv(n_runs, X_test, model.synthesize_assemblies) basis = 'cartesian' cons_mean, cons_err = ci_cons(n_runs, model.synthesize_assemblies, latent_dim, bounds, basis=basis) res = { 'CSS': [prc_mean, prc_err], 'MMD': [mmd_mean, mmd_err], 'R-Div': [rdiv_mean, rdiv_err], 'LSC': [cons_mean, cons_err] } json.dump(res, open('{}/results.json'.format(results_dir), 'w')) results_mesg_0 = 'Precision for assembly: %.3f +/- %.3f' % (prc_mean, prc_err) results_mesg_1 = 'Maximum mean discrepancy for assembly: %.4f +/- %.4f' % ( mmd_mean, mmd_err)
n_runs = 10 feasibility_func = import_module('{}.feasibility'.format( args.data)).check_feasibility prc_mean, prc_err = ci_prc(n_runs, model.synthesize_assemblies, feasibility_func, n_points) print('Precision for assembly: %.3f +/- %.3f' % (prc_mean, prc_err)) mmd_mean, mmd_err = ci_mmd(n_runs, model.synthesize_assemblies, X_test) rdiv_mean, rdiv_err = ci_rdiv(n_runs, X_test, model.synthesize_assemblies) if args.data == 'SC': basis = 'polar' else: basis = 'cartesian' cons0_mean, cons0_err = ci_cons(n_runs, model.synthesize_x0, latent_dim[0], bounds, basis='cartesian') cons1_mean, cons1_err = ci_cons(n_runs, model.synthesize_x1, latent_dim[1], bounds, basis=basis) res = { 'CSS': [prc_mean, prc_err], 'MMD': [mmd_mean, mmd_err], 'R-Div': [rdiv_mean, rdiv_err], 'LSC_A': [cons0_mean, cons0_err], 'LSC_B': [cons1_mean, cons1_err] }
for i in range(len(n_points)): assemblies_list.append(assemblies[:25, n_points_c[i]:n_points_c[i+1]]) plot_samples(None, assemblies_list, scatter=False, alpha=.7, c='k', fname='{}/assemblies'.format(results_dir)) n_runs = 10 feasibility_func = import_module('{}.feasibility'.format(args.data)).check_feasibility prc_mean, prc_err = ci_prc(n_runs, model.synthesize_assemblies, feasibility_func, n_points) print('Precision for assembly: %.3f +/- %.3f' % (prc_mean, prc_err)) mmd_mean, mmd_err = ci_mmd(n_runs, model.synthesize_assemblies, X_test) rdiv_mean, rdiv_err = ci_rdiv(n_runs, X_test, model.synthesize_assemblies) if args.data == 'SCCC': basis = 'polar' else: basis = 'cartesian' cons0_mean, cons0_err = ci_cons(n_runs, model.synthesize_x0, latent_dim[0], bounds, basis='cartesian') cons1_mean, cons1_err = ci_cons(n_runs, model.synthesize_x1, latent_dim[1], bounds, basis=basis) cons2_mean, cons2_err = ci_cons(n_runs, model.synthesize_x2, latent_dim[2], bounds, basis=basis) cons3_mean, cons3_err = ci_cons(n_runs, model.synthesize_x3, latent_dim[3], bounds, basis=basis) cons4_mean, cons4_err = ci_cons(n_runs, model.synthesize_x4, latent_dim[4], bounds, basis=basis) res = {'CSS': [prc_mean, prc_err], 'MMD': [mmd_mean, mmd_err], 'R-Div': [rdiv_mean, rdiv_err], 'LSC_A': [cons0_mean, cons0_err], 'LSC_B': [cons1_mean, cons1_err], 'LSC_C': [cons2_mean, cons2_err], 'LSC_D': [cons3_mean, cons3_err], 'LSC_E': [cons4_mean, cons4_err]} json.dump(res, open('{}/results.json'.format(results_dir), 'w'))