def _evaluate(self, x, # out, *args, **kwargs): """ This method iterate over an Individual, execute the refactoring operation sequentially, and compute quality attributes for the refactored version of the program, as objectives of the search params: x (Individual): x is an instance of Individual (i.e., a list of refactoring operations) """ # Stage 0: Git restore logger.debug("Executing git restore.") git_restore(config.PROJECT_PATH) update_understand_database(config.UDB_PATH) # Stage 1: Execute all refactoring operations in the sequence x logger.debug(f"Reached Individual with Size {len(x[0])}") for refactoring_operation in x[0]: refactoring_operation.do_refactoring() # Update Understand DB update_understand_database(config.UDB_PATH) # Stage 2: Computing quality attributes obj = Objectives(udb_path=config.UDB_PATH) o1 = obj.average del obj o2 = testability_main(config.UDB_PATH) o3 = modularity_main(config.UDB_PATH) logger.info(f"QMOOD AVG Score: {o1}") logger.info(f"Testability Score: {o2}") logger.info(f"Modularity Score: {o3}") # Stage 3: Marshal objectives into vector out["F"] = np.array([-1 * o1, -1 * o2, -1 * o3], dtype=float)
def _evaluate( self, x, # out, *args, **kwargs): """ This method iterate over an Individual, execute the refactoring operation sequentially, and compute quality attributes for the refactored version of the program, as objectives of the search params: x (Individual): x is an instance of Individual (i.e., a list of refactoring operations) """ # Git restore` logger.debug("Executing git restore.") git_restore(config.PROJECT_PATH) update_understand_database(config.UDB_PATH) # Stage 1: Execute all refactoring operations in the sequence x logger.debug(f"Reached Individual with Size {len(x[0])}") for refactoring_operation in x[0]: refactoring_operation.do_refactoring() # Update Understand DB update_understand_database(config.UDB_PATH) # Stage 2: Computing quality attributes qmood = DesignQualityAttributes(udb_path=config.UDB_PATH) o1 = qmood.reusability o2 = qmood.understandability o3 = qmood.flexibility o4 = qmood.functionality o5 = qmood.effectiveness o6 = qmood.extendability del qmood o7 = testability_main(config.UDB_PATH) o8 = modularity_main(config.UDB_PATH) logger.info(f"Reusability Score: {o1}") logger.info(f"Understandability Score: {o2}") logger.info(f"Flexibility Score: {o3}") logger.info(f"Functionality Score: {o4}") logger.info(f"Effectiveness Score: {o5}") logger.info(f"Extendability Score: {o6}") logger.info(f"Testability Score: {o7}") logger.info(f"Modularity Score: {o8}") # Stage 3: Marshal objectives into vector out["F"] = np.array([ -1 * o1, -1 * o2, -1 * o3, -1 * o4, -1 * o5, -1 * o6, -1 * o7, -1 * o8, ], dtype=float)
def _evaluate(self, x, out, *args, **kwargs): """ By default, elementwise_evaluation is set to False, which implies the _evaluate retrieves a set of solutions. params: x (Population): x is a matrix where each row is an individual, and each column a variable. We have one variable of type list (Individual) ==> x.shape = (len(Population), 1) """ objective_values = [] for k, individual_ in enumerate(x): # Stage 0: Git restore logger.debug("Executing git restore.") git_restore(config.PROJECT_PATH) logger.debug("Updating understand database after git restore.") update_understand_database(config.UDB_PATH) # Stage 1: Execute all refactoring operations in the sequence x logger.debug( f"Reached an Individual with size {len(individual_[0])}") for refactoring_operation in individual_[0]: refactoring_operation.do_refactoring() # Update Understand DB logger.debug( f"Updating understand database after {refactoring_operation.name}." ) update_understand_database(config.UDB_PATH) # Stage 2: arr = Array('d', range(8)) if self.evaluate_in_parallel: # Stage 2 (parallel mood): Computing quality attributes p1 = Process(target=calc_qmood_objectives, args=(arr, )) p2 = Process(target=calc_testability_objective, args=( config.UDB_PATH, arr, )) p3 = Process(target=calc_modularity_objective, args=( config.UDB_PATH, arr, )) p1.start(), p2.start(), p3.start() p1.join(), p2.join(), p3.join() else: # Stage 2 (sequential mood): Computing quality attributes qmood = Objectives(udb_path=config.UDB_PATH) arr[0] = qmood.reusability arr[1] = qmood.understandability arr[2] = qmood.flexibility arr[3] = qmood.functionality arr[4] = qmood.effectiveness arr[5] = qmood.extendability arr[6] = testability_main( config.UDB_PATH, initial_value=config.CURRENT_METRICS.get("TEST", 1.0)) arr[7] = modularity_main( config.UDB_PATH, initial_value=config.CURRENT_METRICS.get("MODULE", 1.0)) del qmood # Stage 3: Marshal objectives into vector objective_values.append([-1 * i for i in arr]) logger.info( f"Objective values for individual {k}: {[i for i in arr]}") # Stage 4: Marshal all objectives into out dictionary out['F'] = np.array(objective_values, dtype=float)
def _evaluate( self, x, # out, *args, **kwargs): """ This method iterate over an Individual, execute the refactoring operation sequentially, and compute quality attributes for the refactored version of the program, as objectives of the search params: x (Population): x is a matrix where each row is an individual, and each column a variable. We have one variable of type list (Individual) ==> x.shape = (len(Population), 1) """ objective_values = [] for k, individual_ in enumerate(x): # Stage 0: Git restore logger.debug("Executing git restore.") git_restore(config.PROJECT_PATH) logger.debug("Updating understand database after git restore.") update_understand_database(config.UDB_PATH) # Stage 1: Execute all refactoring operations in the sequence x logger.debug(f"Reached Individual with Size {len(individual_[0])}") for refactoring_operation in individual_[0]: refactoring_operation.do_refactoring() # Update Understand DB logger.debug( f"Updating understand database after {refactoring_operation.name}." ) update_understand_database(config.UDB_PATH) # Stage 2: arr = Array('d', range(8)) if self.evaluate_in_parallel: # Stage 2 (parallel mood): Computing quality attributes p1 = Process(target=calc_qmood_objectives, args=(arr, )) p2 = Process(target=calc_testability_objective, args=( config.UDB_PATH, arr, )) p3 = Process(target=calc_modularity_objective, args=( config.UDB_PATH, arr, )) p1.start(), p2.start(), p3.start() p1.join(), p2.join(), p3.join() o1 = sum([i for i in arr[:6]]) / 6. o2 = arr[7] o3 = arr[8] else: # Stage 2 (sequential mood): Computing quality attributes qmoods = Objectives(udb_path=config.UDB_PATH) o1 = qmoods.average o2 = testability_main(config.UDB_PATH, initial_value=config.CURRENT_METRICS.get( "TEST", 1.0)) o3 = modularity_main(config.UDB_PATH, initial_value=config.CURRENT_METRICS.get( "MODULE", 1.0)) del qmoods # Stage 3: Marshal objectives into vector objective_values.append([-1 * o1, -1 * o2, -1 * o3]) logger.info( f"Objective values for individual {k}: {[-1 * o1, -1 * o2, -1 * o3]}" ) # Stage 4: Marshal all objectives into out dictionary out['F'] = np.array(objective_values, dtype=float)
def calc_modularity_objective(path_, arr_): arr_[7] = modularity_main(path_, initial_value=config.CURRENT_METRICS.get( "MODULE", 1.0))