Example #1
0
    def _define_metrics(self, M):

        self.metrics = {
            'P@5': metrics.PrecisionAtN(k=5),  # P@5
            'P@10': metrics.PrecisionAtN(k=10),  # P@10
            'MAP': metrics.AP(k=M),  # MAP
            'R@5': metrics.RecallAtN(k=5),
            'R@10': metrics.RecallAtN(k=10),
            'NDCG': metrics.NDCG(k=M, gain_type='identity'),  # NDCG
            'MRR': metrics.MRR(k=M),  # MRR
            'SER@5': metrics.Serendipity(self.top_N_items,
                                         k=5),  # Serendipity@5
            'SER@10': metrics.Serendipity(self.top_N_items,
                                          k=10),  # Serendipity@10
            'NOV@5': metrics.Novelty(self.items_rated_by_user_train,
                                     k=5),  # Novelty@5
            'NOV@10': metrics.Novelty(self.items_rated_by_user_train,
                                      k=10),  # Novelty@10
            'DIV@5': metrics.Diversity(self.items_liked_by_user_dict,
                                       k=5),  # Diversity@5
            'DIV@10': metrics.Diversity(self.items_liked_by_user_dict,
                                        k=10)  # Diversity@10
        }
Example #2
0
def main():
    tf.set_random_seed(1)
    train_x, train_y = data_to_train_on()
    test_data = data_to_test()
    print('Loaded training data')
    num_train_samples = len(train_x)
    # num_test_samples = len(test_x)

    # Placeholders for variables
    qdpair = tf.placeholder(tf.float32, [None, train_x.shape[1]],
                            name='qdpair')
    ranking = tf.placeholder(tf.float32, [None, train_y.shape[1]],
                             name='ranking')
    training = tf.placeholder(tf.bool, None, name='training_phase')
    optimal_ranking = tf.placeholder(tf.float32, [None, train_y.shape[1]],
                                     name='optimal_ranking')

    model = CmpNN(qdpair,
                  ranking,
                  regu=0.01,
                  num_features=train_x.shape[1],
                  num_ranks=train_y.shape[1],
                  training=training,
                  optimal_rank=optimal_ranking)

    merged_summary = tf.summary.merge_all()
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    logdir = '/tmp/tensorflow_logs/lr/12'
    test_writer = tf.summary.FileWriter(logdir, graph=tf.get_default_graph())

    num_epochs = 10000

    for epoch in range(num_epochs):
        rand_idx = np.random.randint(num_train_samples,
                                     size=int(num_train_samples / num_epochs))
        qdpair_batch = train_x[rand_idx, :]
        ranking_batch = train_y[rand_idx, :]

        _, summary = sess.run([model.optimize_adam, merged_summary],
                              feed_dict={
                                  qdpair: qdpair_batch,
                                  ranking: ranking_batch,
                                  training: True
                              })
        test_writer.add_summary(summary, epoch)

    preds = sess.run([model.prediction_softmax],
                     feed_dict={qdpair: test_data[1]['qdpairs']})

    # COMPUTE NDCG@10 AND MAP
    # iterate through test samples
    ndcgScore = []
    apScore = []
    for k in test_data:
        preds = sess.run([model.prediction_softmax],
                         feed_dict={qdpair: test_data[k]['qdpairs']})
        preds = np.squeeze(np.array(preds))
        scores = np.zeros((int(test_data[k]['pair_indeces'].max())) + 1)
        for idx, row in enumerate(preds):
            scores[test_data[k]['pair_indeces'][idx, np.argmax(row)]] += 1
        # sort is the score for each document by index
        # the arg sort then gets the documents ordered by best to worst relevance wise
        scores = np.argsort(scores)
        # now need to replace the values with the actual relevance score for each document
        for idx, val in enumerate(scores):
            scores[idx] = int(test_data[k]['target_vales'][val])
        if met.NDCG(scores, 10) > 0:
            ndcgScore.append(met.NDCG(scores, 10))
        else:
            ndcgScore.append(0)
        apScore.append(met.AP(scores))

    # PRINT NDCG AND MAP FOR TEST SET
    print('NDCG@10 ', np.mean(ndcgScore))
    print('MAP ', np.mean(apScore))
Example #3
0
def main():
    # Import training data
    train_x, train_y, qid = get_train_data()
    train_x = train_x.todense()
    train_y = pd.DataFrame(train_y, columns=['relevance'])
    train_y[train_y.columns[0]] = train_y[train_y.columns[0]].map({
        0: '0',
        1: '1',
        2: '2',
        3: '3',
        4: '4'
    })
    train_y = pd.get_dummies(train_y).as_matrix()

    num_samples = train_x.shape[0]
    print('Loaded training data')

    # Import test data
    test, test_x, test_y = data_to_test()
    test_y = pd.DataFrame(test_y, columns=['relevance'])
    test_y[test_y.columns[0]] = test_y[test_y.columns[0]].map({
        0: '0',
        1: '1',
        2: '2',
        3: '3',
        4: '4'
    })
    test_y = pd.get_dummies(test_y).as_matrix()
    print('Loaded test data')

    # Placeholders for variables
    qdpair = tf.placeholder(tf.float32, [None, train_x.shape[1]],
                            name='qdpair')
    ranking = tf.placeholder(tf.float32, [None, train_y.shape[1]],
                             name='qdpair')
    training = tf.placeholder(tf.bool, None, name='training_phase')
    optimal_ranking = tf.placeholder(tf.float32, [None, train_y.shape[1]],
                                     name='optimal_ranking')

    model = LogisticRegression(qdpair,
                               ranking,
                               regu=0,
                               num_features=train_x.shape[1],
                               num_ranks=train_y.shape[1],
                               training=training)

    merged_summary = tf.summary.merge_all()
    iteration = str(8)
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    training_writer = tf.summary.FileWriter('/tmp/tensorflow_logs/lr/' +
                                            iteration + '_train',
                                            graph=tf.get_default_graph())
    test_writer = tf.summary.FileWriter('/tmp/tensorflow_logs/lr/' +
                                        iteration + '_test',
                                        graph=tf.get_default_graph())

    num_epochs = 30000
    for epoch in range(num_epochs):
        rand_idx = np.random.randint(num_samples,
                                     size=int(num_samples / num_epochs))
        qdpair_batch = train_x[rand_idx, :]
        ranking_batch = train_y[rand_idx, :]
        _, summary = sess.run([model.optimize, merged_summary],
                              feed_dict={
                                  qdpair: qdpair_batch,
                                  ranking: ranking_batch,
                                  training: True
                              })
        training_writer.add_summary(summary, epoch)
        if epoch % 100 == 0:
            _, summary = sess.run([model.cost, merged_summary],
                                  feed_dict={
                                      qdpair: test_x,
                                      ranking: test_y,
                                      training: True
                                  })
            test_writer.add_summary(summary, epoch)

    ndcgScore = []
    apScore = []
    for k in test:
        preds = np.squeeze(
            sess.run([model.prediction_softmax],
                     feed_dict={
                         qdpair: test[k]['qd'],
                         training: True
                     }))
        ranks = [np.argmax(pred) for pred in preds]
        # sort is the score for each document by index
        # the arg sort then gets the documents ordered by best to worst relevance wise
        scores = np.argsort(ranks)
        # now need to replace the values with the actual relevance score for each document
        for idx, val in enumerate(scores):
            scores[idx] = int(test[k]['target'][val])
        if met.NDCG(scores, 10) > 0:
            ndcgScore.append(met.NDCG(scores, 10))
            apScore.append(met.AP(scores))
    print(np.mean(ndcgScore))
    print(np.mean(apScore))
Example #4
0
def test_ndcg(net, data, num_users, ratio, save_file=None, gpus=[0]):
    """Evaluate net."""
    progress = ProgressBar()
    posi_scores = [[] for u in range(num_users)]
    posi_binary = [[] for u in range(num_users)]

    net.eval()
    parallel = len(gpus) > 1
    dtype = torch.FloatTensor if parallel else torch.cuda.FloatTensor
    #data.loader.dataset.set_to_posi()
    progress.reset(len(data.loader), messsage='Computing postiive outfits')
    for idx, inputv in enumerate(data.loader):
        items_text, nega_text, items_img, nega_img, uidx = inputv
        text = tuple(Variable(v.type(dtype)) for v in items_text[0])
        img = tuple(Variable(v.type(dtype)) for v in items_img[0])
        uidx = uidx.view(-1, 1)
        uidxv = torch.zeros(uidx.shape[0], num_users).scatter_(1, uidx, 1.0)
        uidxv = Variable(uidxv.type(dtype))
        inputv = (text, img, uidxv)
        if parallel:
            scores, binary = data_parallel(net, inputv, gpus)
        else:
            scores, binary = net(*inputv)
        for n, u in enumerate(uidx.view(-1)):
            posi_binary[u].append(binary[n].item())
            posi_scores[u].append(scores[n].data[0])
        progress.forward()
    progress.end()
    # compute scores for negative outfits
    nega_scores = [[] for u in range(num_users)]
    nega_binary = [[] for u in range(num_users)]
    #data.loader.dataset.set_to_nega(ratio=6)
    progress.reset(len(data.loader), messsage='Computing negative outfits')
    for idx, inputv in enumerate(data.loader):
        posi_text, items_text, posi_img, items_img, uidx = inputv
        for i in range(ratio):
            text = tuple(Variable(v.type(dtype)) for v in items_text[i])
            img = tuple(Variable(v.type(dtype)) for v in items_img[i])
            uidx = uidx.view(-1, 1)
            uidxv = torch.zeros(uidx.shape[0], num_users).scatter_(1, uidx, 1.0)
            uidxv = Variable(uidxv.type(dtype))
            inputv = (text,img, uidxv)
            if parallel:
                scores, binary = data_parallel(net, inputv, gpus)
            else:
                scores, binary = net(*inputv)
            for n, u in enumerate(uidx.view(-1)):
                nega_binary[u].append(binary[n].data[0])
                nega_scores[u].append(scores[n].data[0])
        progress.forward()
    progress.end()
    mean_ndcg, avg_ndcg = metrics.NDCG(posi_scores, nega_scores)
    mean_ndcg_bianry, avg_ndcg_binary = metrics.NDCG(
        posi_binary, nega_binary)
    aucs, mean_auc = metrics.ROC(posi_scores, nega_scores)
    aucs_binary, mean_auc_binary = metrics.ROC(posi_binary, nega_binary)
    results = dict(
        mean_ndcg=mean_ndcg,
        avg_ndcg=avg_ndcg,
        mean_ndcg_bianry=mean_ndcg_bianry,
        avg_ndcg_binary=avg_ndcg_binary,
        aucs=aucs,
        mean_auc=mean_auc,
        aucs_binary=aucs_binary,
        mean_auc_binary=mean_auc_binary)
    print('avg_mean_ndcg:{} avg_mean_auc:{}'.format(
        mean_ndcg.mean(), mean_auc))
    # save results
    if os.path.exists(save_file):
        results.update(np.load(save_file))
    np.savez(save_file, **results)