def plot_obs_freq(predictor_matrix, code):
    coastline = mv.mcoast(map_coastline_thickness=2,
                          map_boundaries="on",
                          map_coastline_colour="chestnut")
    symbol = mv.msymb(
        legend="on",
        symbol_type="marker",
        symbol_table_mode="on",
        symbol_outline="on",
        symbol_min_table=[1, 2, 5, 10, 15, 20, 25, 30],
        symbol_max_table=[2, 5, 10, 15, 20, 25, 30, 100000],
        symbol_colour_table=[
            "RGB(0.7020,0.7020,0.7020)",
            "RGB(0.4039,0.4039,0.4039)",
            "blue",
            "RGB(0.4980,1.0000,0.0000)",
            "RGB(1.0000,0.8549,0.0000)",
            "orange",
            "red",
            "magenta",
        ],
        symbol_marker_table=15,
        symbol_height_table=0.3,
    )

    legend = mv.mlegend(
        legend_text_font="arial",
        legend_text_font_size=0.35,
        legend_entry_plot_direction="row",
        legend_box_blanking="on",
        legend_entry_text_width=50,
    )

    title = mv.mtext(
        text_line_count=4,
        text_line_1=
        "OBS Frequency",  # To sostitute with "FE" values when relevant.
        text_line_2=f"WT Code = {code}",
        text_line_4=" ",
        text_font="arial",
        text_font_size=0.4,
    )

    df = predictor_matrix[["LonOBS", "LatOBS", "OBS"]]
    grouped_df = df.groupby(["LatOBS", "LonOBS"], as_index=False).count()

    geo = mv.create_geo(len(grouped_df), "xyv")
    geo = mv.set_latitudes(geo, grouped_df["LatOBS"].to_numpy(dtype=np.float))
    geo = mv.set_longitudes(geo, grouped_df["LonOBS"].to_numpy(dtype=np.float))
    geo = mv.set_values(geo, grouped_df["OBS"].to_numpy(dtype=np.float))

    with NamedTemporaryFile(delete=False, suffix=".pdf") as pdf:
        pdf_obj = mv.pdf_output(output_name=pdf.name.replace(".pdf", ""))
        mv.setoutput(pdf_obj)

        mv.plot(coastline, symbol, legend, title, geo)
        return pdf.name
def plot_std(predictor_matrix, code):
    coastline = mv.mcoast(map_coastline_thickness=2,
                          map_boundaries="on",
                          map_coastline_colour="chestnut")

    symbol = mv.msymb(
        legend="on",
        symbol_type="marker",
        symbol_table_mode="on",
        symbol_outline="on",
        symbol_min_table=[0, 0.0001, 0.5, 1, 2, 5],
        symbol_max_table=[0.0001, 0.5, 1, 2, 5, 1000],
        symbol_colour_table=[
            "RGB(0.7020,0.7020,0.7020)",
            "RGB(0.2973,0.2973,0.9498)",
            "RGB(0.1521,0.6558,0.5970)",
            "RGB(1.0000,0.6902,0.0000)",
            "red",
            "RGB(1.0000,0.0000,1.0000)",
        ],
        symbol_marker_table=15,
        symbol_height_table=0.3,
    )

    legend = mv.mlegend(
        legend_text_font="arial",
        legend_text_font_size=0.35,
        legend_entry_plot_direction="row",
        legend_box_blanking="on",
        legend_entry_text_width=50,
    )

    error = "FER" if "FER" in predictor_matrix.columns else "FE"

    title = mv.mtext(
        text_line_count=4,
        text_line_1=f"{error} Standard Deviation",
        text_line_2=f"WT Code = {code}",
        text_line_4=" ",
        text_font="arial",
        text_font_size=0.4,
    )

    df = predictor_matrix[["LonOBS", "LatOBS", error]]
    grouped_df = df.groupby(["LatOBS", "LonOBS"])[error].mean().reset_index()

    geo = mv.create_geo(len(grouped_df), "xyv")
    geo = mv.set_latitudes(geo, grouped_df["LatOBS"].to_numpy(dtype=np.float))
    geo = mv.set_longitudes(geo, grouped_df["LonOBS"].to_numpy(dtype=np.float))
    geo = mv.set_values(geo, grouped_df[error].to_numpy(dtype=np.float))

    with NamedTemporaryFile(delete=False, suffix=".pdf") as pdf:
        pdf_obj = mv.pdf_output(output_name=pdf.name.replace(".pdf", ""))
        mv.setoutput(pdf_obj)

        mv.plot(coastline, symbol, legend, title, geo)
        return pdf.name
def plot_avg(predictor_matrix, code):
    coastline = mv.mcoast(map_coastline_thickness=2,
                          map_boundaries="on",
                          map_coastline_colour="chestnut")

    symbol = mv.msymb(
        legend="on",
        symbol_type="marker",
        symbol_table_mode="on",
        symbol_outline="on",
        symbol_min_table=[-1, -0.25, 0.25, 2],
        symbol_max_table=[-0.025, 0.25, 2, 1000],
        symbol_colour_table=[
            "RGB(0.0000,0.5490,0.1882)",
            "black",
            "RGB(1.0000,0.6902,0.0000)",
            "red",
        ],
        symbol_marker_table=15,
        symbol_height_table=0.3,
    )

    legend = mv.mlegend(
        legend_text_font="arial",
        legend_text_font_size=0.35,
        legend_entry_plot_direction="row",
        legend_box_blanking="on",
        legend_entry_text_width=50,
    )

    error = "FER" if "FER" in predictor_matrix.columns else "FE"

    title = mv.mtext(
        text_line_count=4,
        text_line_1=f"{error} Mean",
        text_line_2=f"WT Code = {code}",
        text_line_4=" ",
        text_font="arial",
        text_font_size=0.4,
    )

    df = predictor_matrix[["LonOBS", "LatOBS", error]]
    grouped_df = df.groupby(["LatOBS", "LonOBS"])[error].mean().reset_index()

    geo = mv.create_geo(len(grouped_df), "xyv")
    geo = mv.set_latitudes(geo, grouped_df["LatOBS"].to_numpy(dtype=np.float))
    geo = mv.set_longitudes(geo, grouped_df["LonOBS"].to_numpy(dtype=np.float))
    geo = mv.set_values(geo, grouped_df[error].to_numpy(dtype=np.float))

    return plot_geo(geo, coastline, symbol, legend, title)
Example #4
0
def plot_cdf(*args, location=None, title_font_size=0.4, x_range=None):
    """
    Plot CDF curve
    """

    # check x range
    x_range = [] if x_range is None else x_range
    if x_range and len(x_range) not in [2, 3]:
        raise Exception(
            f"plot_cdf: invalid x_range specified. Format [x_min, x_max, [x_tick]]"
        )
    if len(x_range) == 2 and x_range[1] <= x_range[0]:
        raise Exception(
            f"plot_cdf: invalid x_range specified. x_min={x_range[0]} >= x_max={x_range[1]}"
        )

    layers = _make_layers(*args, form_layout=False)

    desc = []
    cdf_data = []
    cdf_label = []
    title_data = []
    y_values = np.arange(0, 101)
    plot_units = ""
    units_scaler = None

    # compute the cdf for each input layer
    for layer in layers:
        if isinstance(layer["data"], mv.Fieldset):
            # we assume each field has the same units and paramId
            if plot_units == "":
                meta = mv.grib_get(layer["data"][0], ["units", "paramId"])
                if meta and len(meta[0]) == 2:
                    meta = {"units": meta[0][0], "paramId": meta[0][1]}
                    units_scaler = Scaling.find_item(meta)
                    if units_scaler is not None:
                        plot_units = units_scaler.to_units
                    else:
                        plot_units = meta.get("units", "")

            # determine ens number and steps
            members = layer["data"]._unique_metadata("number")
            steps = layer["data"]._unique_metadata("step")
            # print(f"members={members}")
            # ens forecast
            if len(members) > 1:
                for step in steps:
                    v = layer["data"].select(step=step)
                    v = mv.nearest_gridpoint(v, location)
                    # print(f"step={step}")
                    x = np.percentile(v, y_values)
                    if units_scaler is not None:
                        x = units_scaler.scale_value(x)
                    # print(f" x={x}")
                    cdf_data.append(x)
                    cdf_label.append(layer["data"].label + f" +{step}h")

            # deterministic forecast
            else:
                raise Exception(f"plot_cds: only ENS data accepted as input!")

            title_data.append(layer["data"])

    # define x axis params
    if not x_range:
        x_tick, x_min, x_max = Layout.compute_axis_range(
            _y_min(cdf_data), _y_max(cdf_data))
    elif len(x_range) == 2:
        x_min = x_range[0]
        x_max = x_range[1]
        x_tick, _, _ = Layout.compute_axis_range(x_min, x_max)
    elif len(x_range) == 3:
        x_min = x_range[0]
        x_max = x_range[1]
        x_tick = x_range[2]
    else:
        raise Exception(f"plot_cdf: invalid x_range={x_range} specified!")

    # print(f"x_tick={x_tick} x_min={x_min} x_max={x_max}")
    x_title = f"[{plot_units}]"

    # define y axis params
    y_min = 0
    y_max = 100
    y_tick = 10
    y_title = "Percentage [%]"

    # define the view
    view = Layout().build_xy(x_min, x_max, y_min, y_max, x_tick, y_tick,
                             x_title, y_title)
    desc.append(view)

    # define curves
    line_colours = [
        "red",
        "blue",
        "green",
        "black",
        "cyan",
        "evergreen",
        "gold",
        "pink",
    ]
    line_styles = ["solid", "dash", "dotted"]

    colour_idx = -1
    style_idx = 0

    for i, d in enumerate(cdf_data):
        vis = mv.input_visualiser(input_x_values=d, input_y_values=y_values)
        colour_idx = (colour_idx + 1) % len(line_colours)

        vd = mv.mgraph(
            graph_type="curve",
            graph_line_colour=line_colours[colour_idx],
            graph_line_thickness=3,
            legend_user_text=cdf_label[i],
            legend="on",
        )

        desc.append(vis)
        desc.append(vd)

    # add title
    title = Title(font_size=title_font_size)
    t = title.build_cdf(title_data)
    if t is not None:
        desc.append(t)

    # add legend
    legX = 3.5
    legY = 14

    # Legend
    legend = mv.mlegend(
        legend_display_type="disjoint",
        legend_entry_plot_direction="column",
        legend_text_composition="user_text_only",
        legend_border="on",
        legend_border_colour="black",
        legend_box_mode="positional",
        legend_box_x_position=legX,
        legend_box_y_position=legY,
        legend_box_x_length=4,
        legend_box_y_length=3,
        legend_text_font_size=0.35,
        legend_box_blanking="on",
    )
    desc.append(legend)

    mv.plot(desc, animate=False)
Example #5
0
def plot_rmse(*args, ref=None, area=None, title_font_size=0.4, y_max=None):
    """
    Plot RMSE curve
    """

    desc = []

    if not isinstance(ref, mv.Fieldset):
        raise Exception(f"Missing or invalid ref argument!")

    layers = _make_layers(*args, form_layout=False)

    # compute the rmse for each input layer
    data = []  # list of tuples
    rmse_data = []
    title_data = []
    has_ef = False

    for layer in layers:
        if isinstance(layer["data"], mv.Fieldset):
            # determine ens number
            members = layer["data"]._unique_metadata("number")
            # print(f"members={members}")
            # ens forecast
            if len(members) > 1:
                if has_ef:
                    raise Exception(
                        "Only one ENS fieldset can be used in plot_rmse()!")
                has_ef = True
                em_d = None  # ens mean
                for m in members:
                    pf_d = layer["data"].select(number=m)
                    ref_d, pf_d = _prepare_grid(ref, pf_d)
                    data.append(("cf" if m == "0" else "pf", layer["data"]))
                    rmse_data.append(mv.sqrt(mv.average((pf_d - ref_d)**2)))
                    em_d = pf_d if em_d is None else em_d + pf_d

                # compute rmse for ens mean
                data.append(("em", layer["data"]))
                rmse_data.append(
                    mv.sqrt(mv.average((em_d / len(members) - ref_d)**2)))

            # deterministic forecast
            else:
                ref_d, dd = _prepare_grid(ref, layer["data"])
                data.append(("fc", layer["data"]))
                rmse_data.append(mv.sqrt(mv.average((dd - ref_d)**2)))

            title_data.append(layer["data"])

    # define x axis params
    dates = ref.valid_date()
    x_min = dates[0]
    x_max = dates[-1]
    x_tick = 1
    x_title = ""

    # define y axis params
    y_min = 0
    if y_max is None:
        y_tick, _, y_max = Layout.compute_axis_range(0, _y_max(rmse_data))
    else:
        y_tick, _, _ = Layout.compute_axis_range(0, y_max)
    y_title = "RMSE [" + mv.grib_get_string(ref[0], "units") + "]"

    # print(f"y_tick={y_tick} y_max={y_max}")

    # define the view
    view = Layout().build_rmse(x_min, x_max, y_min, y_max, x_tick, y_tick,
                               x_title, y_title)
    desc.append(view)

    # define curves
    ef_label = {"cf": "ENS cf", "pf": "ENS pf", "em": "ENS mean"}
    ef_colour = {"cf": "black", "pf": "red", "em": "kelly_green"}
    fc_colour = [
        "red", "blue", "green", "black", "cyan", "evergreen", "gold", "pink"
    ]
    if has_ef:
        fc_colour = [x for x in fc_colour if x not in list(ef_colour.values())]

    pf_label_added = False
    colour_idx = -1
    legend_item_count = 0
    for i, d in enumerate(rmse_data):
        vis = mv.input_visualiser(input_x_type="date",
                                  input_date_x_values=dates,
                                  input_y_values=d)

        vd = {"graph_type": "curve"}
        line_colour = "black"
        line_width = 1

        if data[i][0] == "fc":
            line_width = 3
            colour_idx = (colour_idx + 1) % len(fc_colour)
            line_colour = fc_colour[colour_idx]
            # print(f"label={data[i][1][0].label}")
            vd["legend_user_text"] = data[i][1].label
            vd["legend"] = "on"
            legend_item_count += 1
        elif data[i][0] == "pf":
            line_width = 1
            line_colour = ef_colour["pf"]
            if not pf_label_added:
                pf_label_added = True
                vd["legend_user_text"] = ef_label.get("pf", "")
                vd["legend"] = "on"
                legend_item_count += 1
        elif data[i][0] in ["cf", "em"]:
            line_width = 3
            line_colour = ef_colour[data[i][0]]
            vd["legend_user_text"] = ef_label.get(data[i][0], "")
            vd["legend"] = "on"
            legend_item_count += 1

        vd["graph_line_colour"] = line_colour
        vd["graph_line_thickness"] = line_width

        desc.append(vis)
        desc.append(mv.mgraph(**vd))

    # add title
    title = Title(font_size=title_font_size)
    t = title.build_rmse(ref, title_data)
    if t is not None:
        desc.append(t)

    # add legend
    leg_left = 3.5
    # legY = 14
    leg_height = legend_item_count * (0.35 + 0.5) + (legend_item_count +
                                                     1) * 0.1
    leg_bottom = 17.5 - leg_height

    # Legend
    legend = mv.mlegend(
        legend_display_type="disjoint",
        legend_entry_plot_direction="column",  # "row",
        legend_text_composition="user_text_only",
        legend_border="on",
        legend_border_colour="black",
        legend_box_mode="positional",
        legend_box_x_position=leg_left,
        legend_box_y_position=leg_bottom,
        legend_box_x_length=4,
        legend_box_y_length=leg_height,
        legend_text_font_size=0.35,
        legend_box_blanking="on",
    )
    desc.append(legend)

    mv.plot(desc, animate=False)
Example #6
0
def plot_diff_maps(
    *args,
    view=None,
    area=None,
    overlay=None,
    diff_style=None,
    pos_values=None,
    title_font_size=0.4,
    legend_font_size=0.35,
    frame=-1,
    animate="auto",
):
    """
    Plot difference maps
    """

    # handle default arguments
    pos_values = [] if pos_values is None else pos_values
    diff_style = [] if diff_style is None else diff_style
    if not isinstance(diff_style, list):
        diff_style = [diff_style]

    # define the view
    view = _make_view(view, area, plot_type="diff")

    # build the layout
    dw = Layout().build_diff(view=view)

    data = {}
    vd = {}

    # the positional arguments has the following order:
    # data1, visdef1.1 visdef1.2 ... data2, visdef2.1, visdef2.2 ...
    # the visdef objects are optional!
    assert len(args) >= 2
    assert isinstance(args[0], mv.Fieldset)
    layers = _make_layers(*args, form_layout=False)
    assert len(layers) == 2
    # LOG.debug(f"layers={layers}")
    data["0"] = layers[0]["data"]
    data["1"] = layers[1]["data"]
    vd["0"] = _make_visdef(data["0"], layers[0]["vd"])
    vd["1"] = _make_visdef(data["1"], layers[1]["vd"])

    # overlay data
    ov_data = {}
    ov_vd = {}
    if overlay is not None:
        # single value, list or tuple: a data item that will be plotted into each map
        if not isinstance(overlay, dict):
            if isinstance(overlay, tuple):
                ov_args = list(overlay)
            else:
                ov_args = [overlay
                           ] if not isinstance(overlay, list) else overlay
            # print(ov_args)
            ov_layers = _make_layers(*ov_args, form_layout=False)
            # print(ov_layers)
            assert len(ov_layers) == 1
            d = ov_layers[0]["data"]
            if isinstance(d, Track):
                d = d.build(style=ov_layers[0]["vd"])
            for k in ["d", "0", "1"]:
                ov_data[k] = d
                ov_vd[k] = _make_visdef(d, ov_layers[0]["vd"])
        else:
            pass

    # LOG.debug("len_0={}".format(len(data["0"])))
    # LOG.debug("len_1={}".format(len(data["0"])))

    # the plot description
    desc = []

    title = Title(font_size=title_font_size)

    # compute diff
    data["0"], data["1"] = _prepare_grid(data["0"], data["1"])
    data["d"] = data["0"] - data["1"]

    data["d"]._ds_param_info = data["1"].ds_param_info
    if data["0"].label and data["1"].label:
        data["d"]._label = "{}-{}".format(data["0"].label, data["1"].label)
    else:
        data["d"]._label = ""
    vd["d"] = _make_visdef(data["d"],
                           diff_style,
                           plot_type="diff",
                           pos_values=pos_values)

    # LOG.debug("len_d={}".format(len(data["d"])))

    for i, k in enumerate(["d", "0", "1"]):
        desc.append(dw[i])
        if frame == -1:
            d = data[k]
        else:
            d = data[k][frame]
            d._ds_param_info = data[k]._ds_param_info
            d._label = data[k]._label

        desc.append(d)
        if vd[k]:
            desc.append(vd[k])

        # add overlay
        if k in ov_data:
            if isinstance(ov_data[k], mv.Fieldset):
                dd = ov_data[k] if frame == -1 else ov_data[k][frame]
            else:
                dd = ov_data[k]
            desc.append(dd)
            if k in ov_vd and ov_vd[k]:
                desc.append(ov_vd[k])

        t = title.build(data[k])
        legend = mv.mlegend(legend_text_font_size=legend_font_size)
        desc.append(legend)
        desc.append(t)

    # print(desc)
    return mv.plot(desc, animate=animate)
Example #7
0
def plot_maps(
    *args,
    layout=None,
    view=None,
    area=None,
    use_eccharts=False,
    title_font_size=0.4,
    legend_font_size=0.35,
    frame=-1,
    animate="auto",
):
    """
    Plot maps with generic contents
    """

    # in the positional arguments we have two options:
    # 1. we only have non-list items. They belong to a single plot page.
    # 2. we only have list items. Each list item defines a separate plot page.
    plot_def = _make_layers(*args, form_layout=True)

    # collect the data items
    data_items = []
    for i, sc_def in enumerate(plot_def):
        for layer in sc_def:
            data = layer["data"]
            if isinstance(data, mv.Fieldset):
                data_items.append(data[0])

    # define the view
    view = _make_view(view, area, data=data_items)

    # build the layout
    num_plot = len(plot_def)
    dw = Layout().build_grid(page_num=num_plot, layout=layout, view=view)

    # the plot description
    desc = []

    title = Title(font_size=title_font_size)

    # build each scene
    data_id = ("d0", 0)
    for i, sc_def in enumerate(plot_def):
        desc.append(dw[i])
        # define layers
        data_items = []
        use_data_id = (sum([
            1 for layer in sc_def if isinstance(layer["data"], mv.Fieldset)
        ]) > 1)
        for layer in sc_def:
            data = layer["data"]
            vd = layer["vd"]
            if isinstance(data, mv.Fieldset):
                if use_data_id:
                    data_items.append((data, data_id[0]))
                else:
                    data_items.append(data)
                if frame != -1:
                    if data.ds_param_info.scalar:
                        data = data[frame]
                    else:
                        data = data[2 * frame:2 * frame + 2]
            elif isinstance(data, Track):
                data = data.build(style=vd)

            desc.append(data)

            if isinstance(data, mv.Fieldset):
                vd = _make_visdef(
                    data,
                    vd,
                    use_eccharts=use_eccharts,
                    style_db="param",
                    plot_type="map",
                    data_id=data_id[0] if use_data_id else None,
                )
                if vd:
                    desc.extend(vd)

            data_id = (f"d{data_id[1]+1}", data_id[1] + 1)

        if data_items:
            legend = mv.mlegend(legend_text_font_size=legend_font_size)
            desc.append(legend)
            t = title.build(data_items)
            # LOG.debug(f"t={t}")
            desc.append(t)

    for i in range(len(plot_def), len(dw)):
        desc.append(dw[i])

    LOG.debug(f"desc={desc}")

    return mv.plot(desc, animate=animate)