def main(): args = get_micro_args() args.num_nodes = args.num_nodes - 2 if args.recommended_arch: filename = args.recommended_arch ctx = get_extension_context( args.context, device_id=args.device_id, type_config=args.type_config) nn.set_default_context(ctx) ext = nn.ext_utils.import_extension_module(args.context) data_iterator = data_iterator_cifar10 tdata = data_iterator(args.batch_size, True) vdata = data_iterator(args.batch_size, False) mean_val_train, std_val_train, channel, img_height, img_width, num_class = get_data_stats( tdata) mean_val_valid, std_val_valid, _, _, _, _ = get_data_stats(vdata) data_dict = {"train_data": (tdata, mean_val_train, std_val_train), "valid_data": (vdata, mean_val_valid, std_val_valid), "basic_info": (channel, img_height, img_width, num_class)} check_arch = np.load(filename) print("Train the model whose architecture is:") show_arch(check_arch) val_acc = CNN_run(args, check_arch.tolist(), data_dict, with_train=True, after_search=True)
def sample_arch_and_train(args, data_dict, controller_weights_dict): """ Execute these process. 1. For a certain number of times, let the controller construct sample architectures and test their performances. (By calling get_sample_and_feedback) 2. By using the performances acquired by the previous process, train the controller. 3. Select one architecture with the best validation accuracy and train its parameters. """ solver = S.Momentum(args.control_lr) # create solver for the controller solver.set_parameters(controller_weights_dict, reset=False, retain_state=True) solver.zero_grad() val_list = list() arch_list = list() with nn.auto_forward(): for c in range(args.num_candidate): output_line = " Architecture {} / {} ".format((c + 1), args.num_candidate) print("{0:-^80s}".format(output_line)) # sample one architecture and get its feedback for RL as loss loss, val_acc, both_archs = get_sample_and_feedback( args, data_dict) val_list.append(val_acc) arch_list.append(both_archs) loss.backward() # accumulate gradient each time print("{0:-^80s}\n".format(" Reinforcement Learning Phase ")) print("current accumulated loss:", loss.d) solver.weight_decay(0.025) solver.update() # train the controller print("\n{0:-^80s}\n".format(" CNN Learning Phase ")) best_idx = np.argmax(val_list) sample_arch = arch_list[best_idx] print("Train the model whose architecture is:") show_arch(sample_arch) print("and its accuracy is: {:.2f} %\n".format(100 * np.max(val_list))) print("Learnable Parameters:", params_count(nn.get_parameters())) # train a child network which achieves the best validation accuracy. val_acc = CNN_run(args, sample_arch, data_dict, with_train=True) return sample_arch, val_acc
def get_sample_and_feedback(args, data_dict): """ Let the controller predict one architecture and test its performance to get feedback. Here the feedback is validation accuracy and will be reused to train the controller. """ entropy_weight = args.entropy_weight bl_dec = args.baseline_decay both_archs, log_probs, entropys = sample_from_controller(args) sample_entropy = entropys sample_log_prob = log_probs show_arch(both_archs) nn.set_auto_forward(False) val_acc = CNN_run(args, both_archs, data_dict) nn.set_auto_forward(True) print("Accuracy on Validation: {:.2f} %\n".format(100 * val_acc)) reward = val_acc if entropy_weight is not None: reward = F.add_scalar(F.mul_scalar(sample_entropy, entropy_weight), reward).d sample_log_prob = F.mul_scalar(sample_log_prob, (1 / args.num_candidate)) if args.use_variance_reduction: baseline = 0.0 # variance reduction baseline = baseline - ((1 - bl_dec) * (baseline - reward)) reward = reward - baseline loss = F.mul_scalar(sample_log_prob, (-1) * reward) return loss, val_acc, both_archs