def test_init_invalid_args(self):
        for K, u in self.invalid_args:
            with pytest.raises((TypeError, ValueError)):
                term = mm.UniaxialAnisotropy(K=K, u=u)

        with pytest.raises(AttributeError):
            term = mm.UniaxialAnisotropy(wrong=1)
Example #2
0
    def test_repr(self):
        for K1, K2, u in self.valid_args:
            anisotropy = mm.UniaxialAnisotropy(K1=K1, K2=K2, u=u)
            exp_str = ("UniaxialAnisotropy(K1={}, K2={}, u={}, "
                       "name=\"{}\")").format(K1, K2, u, "uniaxialanisotropy")
            assert repr(anisotropy) == exp_str

        anisotropy = mm.UniaxialAnisotropy(1000, (0, 0, 1), name="test_name")
        assert repr(anisotropy) == ("UniaxialAnisotropy(K1=1000, K2=0, "
                                    "u=(0, 0, 1), name=\"test_name\")")
    def test_repr(self):
        for K1, K2, u in self.valid_args:
            anisotropy = mm.UniaxialAnisotropy(K1=K1, K2=K2, u=u)
            exp_str = ('UniaxialAnisotropy(K1={}, K2={}, u={}, '
                       'name=\'{}\')').format(K1, K2, u, 'uniaxialanisotropy')
            assert repr(anisotropy) == exp_str

        anisotropy = mm.UniaxialAnisotropy(1000, (0, 0, 1), name='test_name')
        assert repr(anisotropy) == ('UniaxialAnisotropy(K1=1000, K2=0, '
                                    'u=(0, 0, 1), name=\'test_name\')')
Example #4
0
    def test_exchange_dmi_zeeman_uniaxialanisotropy_demag(self):
        name = 'exchange_dmi_zeeman_uniaxialanisotropy'

        mesh = df.Mesh(region=self.region,
                       cell=self.cell,
                       subregions=self.subregions)

        # Very weak DMI and strong Zeeman to make the final
        # magnetisation uniform.
        A = {'r1': 1e-12, 'r2': 3e-12, 'r1:r2': 2e-12}
        D = {'r1': 1e-9, 'r2': 0, 'r1:r2': 5e-9}  # Very weak DMI
        H = df.Field(mesh, dim=3, value=(1e12, 0, 0))
        K = 1e6
        u = (1, 0, 0)
        Ms = 1e5

        system = mm.System(name=name)
        system.energy = mm.Exchange(A=A) + \
            mm.DMI(D=D, crystalclass='Cnv') + \
            mm.UniaxialAnisotropy(K=K, u=u) + \
            mm.Zeeman(H=H) + \
            mm.Demag()
        system.m = df.Field(mesh, dim=3, value=(1, 0.3, 0), norm=Ms)

        md = self.calculator.MinDriver()
        md.drive(system)

        value = system.m(mesh.region.random_point())
        assert np.linalg.norm(np.subtract(value, (Ms, 0, 0))) < 1

        self.calculator.delete(system)
Example #5
0
    def test_field_vector(self):
        name = 'uniaxialanisotropy_field_vector'

        def value_fun(pos):
            x, y, z = pos
            if x <= 0:
                return 0
            else:
                return 1e5

        mesh = df.Mesh(region=self.region, cell=self.cell)

        K = df.Field(mesh, dim=1, value=value_fun)
        u = (0, 0, 1)
        Ms = 1e6

        system = mm.System(name=name)
        system.energy = mm.UniaxialAnisotropy(K=K, u=u)
        system.m = df.Field(mesh, dim=3, value=(0, 0.3, 1), norm=Ms)

        md = self.calculator.MinDriver()
        md.drive(system)

        value = system.m((-2e-9, -2e-9, -2e-9))
        assert np.linalg.norm(np.cross(value, (0, 0.3*Ms, Ms))) < 1e-3

        value = system.m((2e-9, 2e-9, 2e-9))
        assert np.linalg.norm(np.subtract(value, (0, 0, Ms))) < 1e-3

        self.calculator.delete(system)
Example #6
0
    def minimise_system_energy(L, m_init):
        N = 16  # discretisation in one dimension
        cubesize = 100e-9  # cube edge length (m)
        cellsize = cubesize/N  # discretisation in all three dimensions.
        lex = cubesize/L  # exchange length.

        Km = 1e6  # magnetostatic energy density (J/m**3)
        Ms = np.sqrt(2*Km/mm.consts.mu0)  # magnetisation saturation (A/m)
        A = 0.5 * mm.consts.mu0 * Ms**2 * lex**2  # exchange energy constant
        K = 0.1*Km  # Uniaxial anisotropy constant
        u = (0, 0, 1)  # Uniaxial anisotropy easy-axis

        p1 = (0, 0, 0)  # Minimum sample coordinate.
        p2 = (cubesize, cubesize, cubesize)  # Maximum sample coordinate.
        cell = (cellsize, cellsize, cellsize)  # Discretisation.
        region = df.Region(p1=p1, p2=p2)
        mesh = df.Mesh(region=region, cell=cell)

        system = mm.System(name=name)
        system.energy = (mm.Exchange(A=A) + mm.UniaxialAnisotropy(K=K, u=u) +
                         mm.Demag())
        system.m = df.Field(mesh, dim=3, value=m_init, norm=Ms)

        md = calculator.MinDriver()
        md.drive(system)

        calculator.delete(system)

        return system
Example #7
0
    def test_scalar_field(self):
        name = 'uniaxialanisotropy_scalar_field'

        def value_fun(pos):
            x, y, z = pos
            if x <= 0:
                return (1, 0, 0)
            else:
                return (0, 1, 0)

        mesh = df.Mesh(region=self.region, cell=self.cell)

        K = 1e5
        u = df.Field(mesh, dim=3, value=value_fun)
        Ms = 1e6

        system = mm.System(name=name)
        system.energy = mm.UniaxialAnisotropy(K=K, u=u)
        system.m = df.Field(mesh, dim=3, value=(1, 1, 0), norm=Ms)

        md = self.calculator.MinDriver()
        md.drive(system)

        value = system.m((-2e-9, -2e-9, -2e-9))
        assert np.linalg.norm(np.subtract(value, (Ms, 0, 0))) < 1e-3

        value = system.m((2e-9, 2e-9, 2e-9))
        assert np.linalg.norm(np.subtract(value, (0, Ms, 0))) < 1e-3

        self.calculator.delete(system)
    def setup(self):
        A = 1e-12
        self.exchange = mm.Exchange(A=A)
        H = (0, 0, 1.2e6)
        self.zeeman = mm.Zeeman(H=H)
        K1 = 1e4
        K2 = 3e2
        u = (0, 1, 0)
        self.uniaxialanisotropy = mm.UniaxialAnisotropy(K1=K1, K2=K2, u=u)
        self.demag = mm.Demag()
        D = 1e-3
        crystalclass = 't'
        self.dmi = mm.DMI(D=D, crystalclass=crystalclass)
        K1 = 5e6
        u1 = (0, 0, 1)
        u2 = (0, 1, 0)
        self.cubicanisotropy = mm.CubicAnisotropy(K1=K1, u1=u1, u2=u2)

        self.terms = [
            self.exchange, self.zeeman, self.uniaxialanisotropy, self.demag,
            self.dmi, self.cubicanisotropy
        ]

        self.invalid_terms = [
            1, 2.5, 0, 'abc', [3, 7e-12], [self.exchange, self.zeeman]
        ]
 def test_init_valid_args(self):
     for K, u in self.valid_args:
         term = mm.UniaxialAnisotropy(K=K, u=u)
         check_term(term)
         assert hasattr(term, 'K')
         assert hasattr(term, 'u')
         assert term.name == 'uniaxialanisotropy'
         assert re.search(r'^UniaxialAnisotropy\(K=.+, u=.+\)$', repr(term))
Example #10
0
 def test_init_valid_args(self):
     for K1, K2, u in self.valid_args:
         anisotropy = mm.UniaxialAnisotropy(K1=K1, K2=K2, u=u)
         assert anisotropy.K1 == K1
         assert anisotropy.K2 == K2
         assert isinstance(anisotropy.K1, numbers.Real)
         assert isinstance(anisotropy.K2, numbers.Real)
         assert isinstance(anisotropy.u, (tuple, list, np.ndarray))
         assert len(anisotropy.u) == 3
         assert all([isinstance(i, numbers.Real) for i in anisotropy.u])
Example #11
0
def test_skyrmion(calculator):
    name = 'skyrmion'

    Ms = 1.1e6
    A = 1.6e-11
    D = 4e-3
    K = 0.51e6
    u = (0, 0, 1)
    H = (0, 0, 2e5)

    p1 = (-50e-9, -50e-9, 0)
    p2 = (50e-9, 50e-9, 10e-9)
    cell = (5e-9, 5e-9, 5e-9)
    region = df.Region(p1=p1, p2=p2)
    mesh = df.Mesh(p1=p1, p2=p2, cell=cell)

    system = mm.System(name=name)
    system.energy = (mm.Exchange(A=A) + mm.DMI(D=D, crystalclass='Cnv') +
                     mm.UniaxialAnisotropy(K=K, u=u) + mm.Demag() +
                     mm.Zeeman(H=H))

    def Ms_fun(pos):
        x, y, z = pos
        if (x**2 + y**2)**0.5 < 50e-9:
            return Ms
        else:
            return 0

    def m_init(pos):
        x, y, z = pos
        if (x**2 + y**2)**0.5 < 10e-9:
            return (0, 0.1, -1)
        else:
            return (0, 0.1, 1)

    system.m = df.Field(mesh, dim=3, value=m_init, norm=Ms_fun)

    md = calculator.MinDriver()
    md.drive(system)

    # Check the magnetisation at the sample centre.
    value = system.m((0, 0, 0))
    assert value[2] / Ms < -0.97

    # Check the magnetisation at the sample edge.
    value = system.m((50e-9, 0, 0))
    assert value[2] / Ms > 0.5

    self.calculator.delete(system)
Example #12
0
    def setup(self):
        name = 'compute_tests'
        p1 = (0, 0, 0)
        p2 = (10e-9, 2e-9, 2e-9)
        cell = (2e-9, 2e-9, 2e-9)
        region = df.Region(p1=p1, p2=p2)
        mesh = df.Mesh(region=region, cell=cell)

        self.system = mm.System(name=name)
        self.system.energy = (
            mm.Exchange(A=1e-12) + mm.Demag() + mm.Zeeman(H=(8e6, 0, 0)) +
            mm.UniaxialAnisotropy(K=1e4, u=(0, 0, 1)) +
            mm.CubicAnisotropy(K=1e3, u1=(1, 0, 0), u2=(0, 1, 0)))

        self.system.m = df.Field(mesh, dim=3, value=(0, 0, 1), norm=8e6)
Example #13
0
    def test_repr_latex(self):
        for K1, K2, u in self.valid_args:
            anisotropy = mm.UniaxialAnisotropy(K1=K1, K2=K2, u=u)
            latex = anisotropy._repr_latex_()

            # Assert some characteristics of LaTeX string.
            assert isinstance(latex, str)
            assert latex[0] == latex[-1] == '$'
            assert 'K_{1}' in latex
            assert '\mathbf{u}' in latex
            assert '\mathbf{m}' in latex
            assert '^{2}' in latex
            assert '\cdot' in latex
            if K2 != 0:
                assert 'K_{2}' in latex
                assert '^{4}' in latex
    def setup(self):
        self.exchange = mm.Exchange(A=1e-12)
        self.zeeman = mm.Zeeman(H=(0, 0, 1.2e6))
        self.uniaxialanisotropy = mm.UniaxialAnisotropy(K=1e4, u=(0, 1, 0))
        self.demag = mm.Demag()
        self.dmi = mm.DMI(D=1e-3, crystalclass='T')
        self.cubicanisotropy = mm.CubicAnisotropy(K={
            'r1': 1e6,
            'r2': 5e6
        },
                                                  u1=(0, 0, 1),
                                                  u2=(0, 1, 0))

        self.terms = [
            self.exchange, self.zeeman, self.uniaxialanisotropy, self.demag,
            self.dmi, self.cubicanisotropy
        ]

        self.invalid_terms = [1, 2.5, 0, 'abc', [3, 7e-12], [self.exchange, 2]]
Example #15
0
    def test_scalar_vector(self):
        name = 'uniaxialanisotropy_scalar_vector'

        K = 1e5
        u = (0, 0, 1)
        Ms = 1e6

        system = mm.System(name=name)
        system.energy = mm.UniaxialAnisotropy(K=K, u=u)

        mesh = df.Mesh(region=self.region, cell=self.cell)
        system.m = df.Field(mesh, dim=3, value=(0, 0.3, 1), norm=Ms)

        md = self.calculator.MinDriver()
        md.drive(system)

        value = system.m(mesh.region.random_point())
        assert np.linalg.norm(np.subtract(value, (0, 0, Ms))) < 1e-3

        self.calculator.delete(system)
Example #16
0
    def test_field_dict(self):
        name = 'uniaxialanisotropy_field_dict'

        def K_fun(pos):
            x, y, z = pos
            if -2e-9 <= x <= 2e-9:
                return 0
            else:
                return 1e5

        def u_fun(pos):
            x, y, z = pos
            if x <= 0:
                return (1, 0, 0)
            else:
                return (0, 1, 0)

        mesh = df.Mesh(region=self.region, cell=self.cell)

        K = df.Field(mesh, dim=1, value=K_fun)
        u = df.Field(mesh, dim=3, value=u_fun)
        Ms = 1e6

        system = mm.System(name=name)
        system.energy = mm.UniaxialAnisotropy(K=K, u=u)
        system.m = df.Field(mesh, dim=3, value=(1, 1, 0), norm=Ms)

        md = self.calculator.MinDriver()
        md.drive(system)

        value = system.m((-3e-9, -3e-9, -3e-9))
        assert np.linalg.norm(np.subtract(value, (Ms, 0, 0))) < 1e-3

        value = system.m((3e-9, 3e-9, 3e-9))
        assert np.linalg.norm(np.subtract(value, (0, Ms, 0))) < 1e-3

        value = system.m((0, 0, 0))
        assert np.linalg.norm(np.cross(value, (Ms, Ms, 0))) < 1e-3

        self.calculator.delete(system)
Example #17
0
    def test_dict_vector(self):
        name = 'uniaxialanisotropy_dict_vector'

        mesh = df.Mesh(region=self.region, cell=self.cell,
                       subregions=self.subregions)
        K = {'r1': 0, 'r2': 1e5}
        u = (0, 0, 1)
        Ms = 1e6

        system = mm.System(name=name)
        system.energy = mm.UniaxialAnisotropy(K=K, u=u)
        system.m = df.Field(mesh, dim=3, value=(0, 0.3, 1), norm=Ms)

        md = self.calculator.MinDriver()
        md.drive(system)

        value = system.m((-2e-9, -2e-9, -2e-9))
        assert np.linalg.norm(np.cross(value, (0, 0.3*Ms, Ms))) < 1e-3

        value = system.m((2e-9, 2e-9, 2e-9))
        assert np.linalg.norm(np.subtract(value, (0, 0, Ms))) < 1e-3

        self.calculator.delete(system)
Example #18
0
    def test_exchange_uniaxialanisotropy(self):
        name = 'exchange_uniaxialanisotropy'

        A = {'r1': 1e-12, 'r2': 0}
        K = 1e5
        u = (1, 0, 0)
        Ms = 1e6

        mesh = df.Mesh(region=self.region,
                       cell=self.cell,
                       subregions=self.subregions)

        system = mm.System(name=name)
        system.energy = mm.Exchange(A=A) + \
            mm.UniaxialAnisotropy(K=K, u=u)
        system.m = df.Field(mesh, dim=3, value=(0.5, 1, 0), norm=Ms)

        md = self.calculator.MinDriver()
        md.drive(system)

        value = system.m(mesh.region.random_point())
        assert np.linalg.norm(np.subtract(value, (Ms, 0, 0))) < 1e-3

        self.calculator.delete(system)
Example #19
0
 def test_script(self):
     for K1, K2, u in self.valid_args:
         anisotropy = mm.UniaxialAnisotropy(K1=K1, K2=K2, u=u)
         with pytest.raises(NotImplementedError):
             script = anisotropy._script
Example #20
0
 def test_name(self):
     for K1, K2, u in self.valid_args:
         anisotropy = mm.UniaxialAnisotropy(K1=K1, K2=K2, u=u)
         assert anisotropy.name == 'uniaxialanisotropy'
Example #21
0
 def test_init_invalid_args(self):
     for K1, K2, u in self.invalid_args:
         with pytest.raises(Exception):
             anisotropy = mm.UniaxialAnisotropy(K1=K1, K2=K2, u=u)