def extract_folds(depth_file, depth_threshold=2, min_fold_size=50, save_file=False, output_file='', background_value=-1, verbose=False): """ Use depth threshold to extract folds from a triangular surface mesh. A fold is a group of connected, deep vertices. To extract folds, a depth threshold is used to segment deep vertices of the surface mesh. We have observed in the histograms of travel depth measures of cortical surfaces that there is a rapidly decreasing distribution of low depth values (corresponding to the outer surface, or gyral crowns) with a long tail of higher depth values (corresponding to the folds). The find_depth_threshold function therefore computes a histogram of travel depth measures, smooths the histogram's bin values, convolves to compute slopes, and finds the depth value for the first bin with zero slope. The extract_folds function uses this depth value, segments deep vertices, and removes extremely small folds (empirically set at 50 vertices or fewer out of a total mesh size of over 100,000 vertices). Steps :: 1. Segment deep vertices as an initial set of folds. 2. Remove small folds. 3. Renumber folds. Note :: Removed option: Find and fill holes in the folds: Folds could have holes in areas shallower than the depth threshold. Calling fill_holes() could accidentally include very shallow areas (in an annulus-shaped fold, for example). However, we could include the argument exclude_range to check for any values from zero to min_hole_depth; holes would not be filled if they were to contain values within this range. Parameters ---------- depth_file : string surface mesh file in VTK format with faces and depth scalar values depth_threshold : float threshold defining the minimum depth for vertices to be in a fold min_fold_size : integer minimum fold size (number of vertices) save_file : bool save output VTK file? output_file : string name of output file in VTK format background_value : integer or float background value verbose : bool print statements? Returns ------- folds : list of integers fold numbers for all vertices (-1 for non-fold vertices) n_folds : int number of folds folds_file : string (if save_file) name of output VTK file with fold IDs (-1 for non-fold vertices) Examples -------- >>> from mindboggle.features.folds import extract_folds >>> from mindboggle.mio.fetch_data import prep_tests >>> urls, fetch_data = prep_tests() >>> depth_file = fetch_data(urls['left_travel_depth'], '', '.vtk') >>> depth_threshold = 2.36089 >>> min_fold_size = 50 >>> save_file = True >>> output_file = 'extract_folds.vtk' >>> background_value = -1 >>> verbose = False >>> folds, n_folds, folds_file = extract_folds(depth_file, ... depth_threshold, min_fold_size, save_file, output_file, ... background_value, verbose) >>> n_folds 33 >>> lens = [len([x for x in folds if x == y]) for y in range(n_folds)] >>> lens[0:10] [726, 67241, 2750, 5799, 1151, 6360, 1001, 505, 228, 198] View folds (skip test): >>> from mindboggle.mio.plots import plot_surfaces # doctest: +SKIP >>> plot_surfaces('extract_folds.vtk') # doctest: +SKIP View folds without background (skip test): >>> from mindboggle.mio.plots import plot_surfaces # doctest: +SKIP >>> from mindboggle.mio.vtks import rewrite_scalars # doctest: +SKIP >>> rewrite_scalars(depth_file, 'extract_folds_no_background.vtk', folds, ... 'just_folds', folds, -1) # doctest: +SKIP >>> plot_surfaces('extract_folds_no_background.vtk') # doctest: +SKIP """ import os import numpy as np from time import time from mindboggle.mio.vtks import rewrite_scalars, read_vtk from mindboggle.guts.mesh import find_neighbors from mindboggle.guts.segment import segment_regions if verbose: print("Extract folds in surface mesh") t0 = time() # ------------------------------------------------------------------------ # Load depth values for all vertices # ------------------------------------------------------------------------ points, indices, lines, faces, depths, scalar_names, npoints, \ input_vtk = read_vtk(depth_file, return_first=True, return_array=True) # ------------------------------------------------------------------------ # Find the deepest vertices # ------------------------------------------------------------------------ indices_deep = [i for i,x in enumerate(depths) if x >= depth_threshold] if indices_deep: # -------------------------------------------------------------------- # Find neighbors for each vertex # -------------------------------------------------------------------- neighbor_lists = find_neighbors(faces, npoints) # -------------------------------------------------------------------- # Segment deep vertices as an initial set of folds # -------------------------------------------------------------------- if verbose: print(" Segment vertices deeper than {0:.2f} as folds".format(depth_threshold)) t1 = time() folds = segment_regions(indices_deep, neighbor_lists, 1, [], False, False, [], [], [], '', background_value, False) if verbose: print(' ...Segmented folds ({0:.2f} seconds)'.format(time() - t1)) # -------------------------------------------------------------------- # Remove small folds # -------------------------------------------------------------------- if min_fold_size > 1: if verbose: print(' Remove folds smaller than {0}'.format(min_fold_size)) unique_folds = [x for x in np.unique(folds) if x != background_value] for nfold in unique_folds: indices_fold = [i for i,x in enumerate(folds) if x == nfold] if len(indices_fold) < min_fold_size: folds[indices_fold] = background_value # -------------------------------------------------------------------- # Find and fill holes in the folds # Note: Surfaces surrounded by folds can be mistaken for holes, # so exclude_range includes outer surface values close to zero. # -------------------------------------------------------------------- # folds = fill_holes(folds, neighbor_lists, values=depths, # exclude_range=[0, min_hole_depth]) # -------------------------------------------------------------------- # Renumber folds so they are sequential. # NOTE: All vertices are included (-1 for non-fold vertices). # -------------------------------------------------------------------- renumber_folds = background_value * np.ones(npoints) fold_numbers = [x for x in np.unique(folds) if x != background_value] for i_fold, n_fold in enumerate(fold_numbers): fold_indices = [i for i,x in enumerate(folds) if x == n_fold] renumber_folds[fold_indices] = i_fold folds = renumber_folds folds = [int(x) for x in folds] n_folds = i_fold + 1 # Print statement if verbose: print(' ...Extracted {0} folds ({1:.2f} seconds)'. format(n_folds, time() - t0)) else: if verbose: print(' No deep vertices') # ------------------------------------------------------------------------ # Return folds, number of folds, file name # ------------------------------------------------------------------------ if save_file: if output_file: folds_file = output_file else: folds_file = os.path.join(os.getcwd(), 'folds.vtk') rewrite_scalars(depth_file, folds_file, folds, 'folds', [], background_value) if not os.path.exists(folds_file): raise IOError(folds_file + " not found") else: folds_file = None return folds, n_folds, folds_file
def extract_sulci(labels_file, folds_or_file, hemi, min_boundary=1, sulcus_names=[], save_file=False, output_file='', background_value=-1, verbose=False): """ Identify sulci from folds in a brain surface according to a labeling protocol that includes a list of label pairs defining each sulcus. Since folds are defined as deep, connected areas of a surface, and since folds may be connected to each other in ways that differ across brains, there usually does not exist a one-to-one mapping between folds of one brain and those of another. To address the correspondence problem then, we need to find just those portions of the folds that correspond across brains. To accomplish this, Mindboggle segments folds into sulci, which do have a one-to-one correspondence across non-pathological brains. Mindboggle defines a sulcus as a folded portion of cortex whose opposing banks are labeled with one or more sulcus label pairs in the DKT labeling protocol, where each label pair is unique to one sulcus and represents a boundary between two adjacent gyri, and each vertex has one gyrus label. This function assigns vertices in a fold to a sulcus in one of two cases. In the first case, vertices whose labels are in only one label pair in the fold are assigned to the label pair’s sulcus if they are connected through similarly labeled vertices to the boundary between the two labels. In the second case, the segment_regions function propagates labels from label borders to vertices whose labels are in multiple label pairs in the fold. Steps for each fold :: 1. Remove fold if it has fewer than two labels. 2. Remove fold if its labels do not contain a sulcus label pair. 3. Find vertices with labels that are in only one of the fold's label boundary pairs. Assign the vertices the sulcus with the label pair if they are connected to the label boundary for that pair. 4. If there are remaining vertices, segment into sets of vertices connected to label boundaries, and assign a unique ID to each set. Parameters ---------- labels_file : string file name for surface mesh VTK containing labels for all vertices folds_or_file : numpy array, list or string fold number for each vertex / name of VTK file containing fold scalars hemi : string hemisphere abbreviation in {'lh', 'rh'} for sulcus labels min_boundary : integer minimum number of vertices for a sulcus label boundary segment sulcus_names : list of strings names of sulci save_file : bool save output VTK file? output_file : string name of output file in VTK format background_value : integer or float background value verbose : bool print statements? Returns ------- sulci : list of integers sulcus numbers for all vertices (-1 for non-sulcus vertices) n_sulci : integers number of sulci sulci_file : string output VTK file with sulcus numbers (-1 for non-sulcus vertices) Examples -------- >>> # Example 1: Extract sulcus from a fold with one sulcus label pair: >>> import numpy as np >>> from mindboggle.features.sulci import extract_sulci >>> from mindboggle.mio.vtks import read_scalars >>> from mindboggle.mio.fetch_data import prep_tests >>> urls, fetch_data = prep_tests() >>> # Load labels, folds, neighbor lists, and sulcus names and label pairs >>> labels_file = fetch_data(urls['left_freesurfer_labels'], '', '.vtk') >>> folds_file = fetch_data(urls['left_folds'], '', '.vtk') >>> folds_or_file, name = read_scalars(folds_file, True, True) >>> save_file = True >>> output_file = 'extract_sulci_fold4_1sulcus.vtk' >>> background_value = -1 >>> # Limit number of folds to speed up the test: >>> limit_folds = True >>> if limit_folds: ... fold_numbers = [4] #[4, 6] ... i0 = [i for i,x in enumerate(folds_or_file) if x not in fold_numbers] ... folds_or_file[i0] = background_value >>> hemi = 'lh' >>> min_boundary = 10 >>> sulcus_names = [] >>> verbose = False >>> sulci, n_sulci, sulci_file = extract_sulci(labels_file, folds_or_file, ... hemi, min_boundary, sulcus_names, save_file, output_file, ... background_value, verbose) >>> n_sulci # 23 # (if not limit_folds) 1 >>> lens = [len([x for x in sulci if x==y]) ... for y in np.unique(sulci) if y != -1] >>> lens[0:10] # [6358, 3288, 7612, 5205, 4414, 6251, 3493, 2566, 4436, 739] # (if not limit_folds) [1151] View result without background (skip test): >>> from mindboggle.mio.plots import plot_surfaces # doctest: +SKIP >>> from mindboggle.mio.vtks import rewrite_scalars # doctest: +SKIP >>> output = 'extract_sulci_fold4_1sulcus_no_background.vtk' >>> rewrite_scalars(sulci_file, output, sulci, ... 'sulci', sulci) # doctest: +SKIP >>> plot_surfaces(output) # doctest: +SKIP Example 2: Extract sulcus from a fold with multiple sulcus label pairs: >>> folds_or_file, name = read_scalars(folds_file, True, True) >>> output_file = 'extract_sulci_fold7_2sulci.vtk' >>> # Limit number of folds to speed up the test: >>> limit_folds = True >>> if limit_folds: ... fold_numbers = [7] #[4, 6] ... i0 = [i for i,x in enumerate(folds_or_file) if x not in fold_numbers] ... folds_or_file[i0] = background_value >>> sulci, n_sulci, sulci_file = extract_sulci(labels_file, folds_or_file, ... hemi, min_boundary, sulcus_names, save_file, output_file, ... background_value, verbose) >>> n_sulci # 23 # (if not limit_folds) 2 >>> lens = [len([x for x in sulci if x==y]) ... for y in np.unique(sulci) if y != -1] >>> lens[0:10] # [6358, 3288, 7612, 5205, 4414, 6251, 3493, 2566, 4436, 739] # (if not limit_folds) [369, 93] View result without background (skip test): >>> from mindboggle.mio.plots import plot_surfaces # doctest: +SKIP >>> from mindboggle.mio.vtks import rewrite_scalars # doctest: +SKIP >>> output = 'extract_sulci_fold7_2sulci_no_background.vtk' >>> rewrite_scalars(sulci_file, output, sulci, ... 'sulci', sulci) # doctest: +SKIP >>> plot_surfaces(output) # doctest: +SKIP """ import os from time import time import numpy as np from mindboggle.mio.vtks import read_scalars, read_vtk, rewrite_scalars from mindboggle.guts.mesh import find_neighbors from mindboggle.guts.segment import extract_borders, propagate, segment_regions from mindboggle.mio.labels import DKTprotocol # Load fold numbers if folds_or_file is a string: if isinstance(folds_or_file, str): folds, name = read_scalars(folds_or_file) elif isinstance(folds_or_file, list): folds = folds_or_file elif isinstance(folds_or_file, np.ndarray): folds = folds_or_file.tolist() dkt = DKTprotocol() if hemi == 'lh': pair_lists = dkt.left_sulcus_label_pair_lists elif hemi == 'rh': pair_lists = dkt.right_sulcus_label_pair_lists else: raise IOError( "Warning: hemisphere not properly specified ('lh' or 'rh').") # Load points, faces, and neighbors: points, indices, lines, faces, labels, scalar_names, npoints, \ input_vtk = read_vtk(labels_file) neighbor_lists = find_neighbors(faces, npoints) # Array of sulcus IDs for fold vertices, initialized as -1. # Since we do not touch gyral vertices and vertices whose labels # are not in the label list, or vertices having only one label, # their sulcus IDs will remain -1: sulci = background_value * np.ones(npoints) # ------------------------------------------------------------------------ # Loop through folds # ------------------------------------------------------------------------ fold_numbers = [int(x) for x in np.unique(folds) if x != background_value] n_folds = len(fold_numbers) if verbose: print("Extract sulci from {0} folds...".format(n_folds)) t0 = time() for n_fold in fold_numbers: fold_indices = [i for i, x in enumerate(folds) if x == n_fold] len_fold = len(fold_indices) # List the labels in this fold: fold_labels = [labels[x] for x in fold_indices] unique_fold_labels = [ int(x) for x in np.unique(fold_labels) if x != background_value ] # -------------------------------------------------------------------- # NO MATCH -- fold has fewer than two labels # -------------------------------------------------------------------- if verbose and len(unique_fold_labels) < 2: # Ignore: sulci already initialized with -1 values: if not unique_fold_labels: print(" Fold {0} ({1} vertices): " "NO MATCH -- fold has no labels".format( n_fold, len_fold)) else: print(" Fold {0} ({1} vertices): " "NO MATCH -- fold has only one label ({2})".format( n_fold, len_fold, unique_fold_labels[0])) # Ignore: sulci already initialized with -1 values else: # Find all label boundary pairs within the fold: indices_fold_pairs, fold_pairs, unique_fold_pairs = \ extract_borders(fold_indices, labels, neighbor_lists, ignore_values=[], return_label_pairs=True) # Find fold label pairs in the protocol (pairs are already sorted): fold_pairs_in_protocol = [ x for x in unique_fold_pairs if x in dkt.unique_sulcus_label_pairs ] if verbose and unique_fold_labels: print(" Fold {0} labels: {1} ({2} vertices)".format( n_fold, ', '.join([str(x) for x in unique_fold_labels]), len_fold)) # ---------------------------------------------------------------- # NO MATCH -- fold has no sulcus label pair # ---------------------------------------------------------------- if verbose and not fold_pairs_in_protocol: print(" Fold {0}: NO MATCH -- fold has no sulcus label pair". format(n_fold, len_fold)) # ---------------------------------------------------------------- # Possible matches # ---------------------------------------------------------------- else: if verbose: print(" Fold {0} label pairs in protocol: {1}".format( n_fold, ', '.join([str(x) for x in fold_pairs_in_protocol]))) # Labels in the protocol (includes repeats across label pairs): labels_in_pairs = [ x for lst in fold_pairs_in_protocol for x in lst ] # Labels that appear in one or more sulcus label boundary: unique_labels = [] nonunique_labels = [] for label in np.unique(labels_in_pairs): if len([x for x in labels_in_pairs if x == label]) == 1: unique_labels.append(label) else: nonunique_labels.append(label) # ------------------------------------------------------------ # Vertices whose labels are in only one sulcus label pair # ------------------------------------------------------------ # Find vertices with a label that is in only one of the fold's # label pairs (the other label in the pair can exist in other # pairs). Assign the vertices the sulcus with the label pair # if they are connected to the label boundary for that pair. # ------------------------------------------------------------ if unique_labels: for pair in fold_pairs_in_protocol: # If one or both labels in label pair is/are unique: unique_labels_in_pair = [ x for x in pair if x in unique_labels ] n_unique = len(unique_labels_in_pair) if n_unique: ID = None for i, pair_list in enumerate(pair_lists): if not isinstance(pair_list, list): pair_list = [pair_list] if pair in pair_list: ID = i break if ID: # Seeds from label boundary vertices # (fold_pairs and pair already sorted): indices_pair = [ x for i, x in enumerate(indices_fold_pairs) if fold_pairs[i] == pair ] # Vertices with unique label(s) in pair: indices_unique_labels = [ fold_indices[i] for i, x in enumerate(fold_labels) if x in unique_labels_in_pair ] #dkt.unique_sulcus_label_pairs] # Propagate sulcus ID from seeds to vertices # with "unique" labels (only exist in one # label pair in a fold); propagation ensures # that sulci consist of contiguous vertices # for each label boundary: sulci2 = segment_regions( indices_unique_labels, neighbor_lists, min_region_size=1, seed_lists=[indices_pair], keep_seeding=False, spread_within_labels=True, labels=labels, label_lists=[], values=[], max_steps='', background_value=background_value, verbose=False) sulci[sulci2 != background_value] = ID # Print statement: if verbose: if n_unique == 1: ps1 = 'One label' else: ps1 = 'Both labels' if len(sulcus_names): ps2 = sulcus_names[ID] else: ps2 = '' print(" {0} unique to one fold pair: " "{1} {2}".format( ps1, ps2, unique_labels_in_pair)) # ------------------------------------------------------------ # Vertex labels shared by multiple label pairs # ------------------------------------------------------------ # Propagate labels from label borders to vertices with labels # that are shared by multiple label pairs in the fold. # ------------------------------------------------------------ if len(nonunique_labels): # For each label shared by different label pairs: for label in nonunique_labels: # Print statement: if verbose: print( " Propagate sulcus borders with label {0}". format(int(label))) # Construct seeds from label boundary vertices: seeds = background_value * np.ones(npoints) for ID, pair_list in enumerate(pair_lists): if not isinstance(pair_list, list): pair_list = [pair_list] label_pairs = [x for x in pair_list if label in x] for label_pair in label_pairs: indices_pair = [ x for i, x in enumerate(indices_fold_pairs) if np.sort(fold_pairs[i]).tolist() == label_pair ] if indices_pair: # Do not include short boundary segments: if min_boundary > 1: indices_pair2 = [] seeds2 = segment_regions( indices_pair, neighbor_lists, 1, [], False, False, [], [], [], '', background_value, verbose) useeds2 = [ x for x in np.unique(seeds2) if x != background_value ] for seed2 in useeds2: iseed2 = [ i for i, x in enumerate(seeds2) if x == seed2 ] if len(iseed2) >= min_boundary: indices_pair2.extend(iseed2) elif verbose: if len(iseed2) == 1: print(" Remove " "assignment " "of ID {0} from " "1 vertex".format( seed2)) else: print( " Remove " "assignment " "of ID {0} from " "{1} vertices".format( seed2, len(iseed2))) indices_pair = indices_pair2 # Assign sulcus IDs to seeds: seeds[indices_pair] = ID # Identify vertices with the label: indices_label = [ fold_indices[i] for i, x in enumerate(fold_labels) if x == label ] if len(indices_label): # Propagate sulcus ID from seeds to vertices # with a given shared label: seg_vs_prop = False if seg_vs_prop: indices_seeds = [] for seed in [ x for x in np.unique(seeds) if x != background_value ]: indices_seeds.append([ i for i, x in enumerate(seeds) if x == seed ]) sulci2 = segment_regions( indices_label, neighbor_lists, 50, indices_seeds, False, True, labels, [], [], '', background_value, verbose) else: label_array = background_value * \ np.ones(npoints) label_array[indices_label] = 1 sulci2 = propagate( points, faces, label_array, seeds, sulci, max_iters=10000, tol=0.001, sigma=5, background_value=background_value, verbose=verbose) sulci[sulci2 != background_value] = \ sulci2[sulci2 != background_value] sulcus_numbers = [ int(x) for x in np.unique(sulci) if x != background_value ] n_sulci = len(sulcus_numbers) # ------------------------------------------------------------------------ # Print statements # ------------------------------------------------------------------------ if verbose: if n_sulci == 1: sulcus_str = 'sulcus' else: sulcus_str = 'sulci' if n_folds == 1: folds_str = 'fold' else: folds_str = 'folds' print("Extracted {0} {1} from {2} {3} ({4:.1f}s):".format( n_sulci, sulcus_str, n_folds, folds_str, time() - t0)) if sulcus_names: for sulcus_number in sulcus_numbers: print(" {0}: {1}".format(sulcus_number, sulcus_names[sulcus_number])) elif sulcus_numbers: print(" " + ", ".join([str(x) for x in sulcus_numbers])) unresolved = [ i for i in range(len(pair_lists)) if i not in sulcus_numbers ] if len(unresolved) == 1: print("The following sulcus is unaccounted for:") else: print("The following {0} sulci are unaccounted for:".format( len(unresolved))) if sulcus_names: for sulcus_number in unresolved: print(" {0}: {1}".format(sulcus_number, sulcus_names[sulcus_number])) else: print(" " + ", ".join([str(x) for x in unresolved])) # ------------------------------------------------------------------------ # Return sulci, number of sulci, and file name # ------------------------------------------------------------------------ sulci = [int(x) for x in sulci] sulci_file = os.path.join(os.getcwd(), 'sulci.vtk') rewrite_scalars(labels_file, sulci_file, sulci, 'sulci', [], background_value) if not os.path.exists(sulci_file): raise IOError(sulci_file + " not found") return sulci, n_sulci, sulci_file
def extract_folds(depth_file, depth_threshold=2, min_fold_size=50, save_file=False, output_file='', background_value=-1, verbose=False): """ Use depth threshold to extract folds from a triangular surface mesh. A fold is a group of connected, deep vertices. To extract folds, a depth threshold is used to segment deep vertices of the surface mesh. We have observed in the histograms of travel depth measures of cortical surfaces that there is a rapidly decreasing distribution of low depth values (corresponding to the outer surface, or gyral crowns) with a long tail of higher depth values (corresponding to the folds). The find_depth_threshold function therefore computes a histogram of travel depth measures, smooths the histogram's bin values, convolves to compute slopes, and finds the depth value for the first bin with zero slope. The extract_folds function uses this depth value, segments deep vertices, and removes extremely small folds (empirically set at 50 vertices or fewer out of a total mesh size of over 100,000 vertices). Steps :: 1. Segment deep vertices as an initial set of folds. 2. Remove small folds. 3. Renumber folds. Note :: Removed option: Find and fill holes in the folds: Folds could have holes in areas shallower than the depth threshold. Calling fill_holes() could accidentally include very shallow areas (in an annulus-shaped fold, for example). However, we could include the argument exclude_range to check for any values from zero to min_hole_depth; holes would not be filled if they were to contain values within this range. Parameters ---------- depth_file : string surface mesh file in VTK format with faces and depth scalar values depth_threshold : float threshold defining the minimum depth for vertices to be in a fold min_fold_size : integer minimum fold size (number of vertices) save_file : bool save output VTK file? output_file : string name of output file in VTK format background_value : integer or float background value verbose : bool print statements? Returns ------- folds : list of integers fold numbers for all vertices (-1 for non-fold vertices) n_folds : int number of folds folds_file : string (if save_file) name of output VTK file with fold IDs (-1 for non-fold vertices) Examples -------- >>> from mindboggle.features.folds import extract_folds >>> from mindboggle.mio.fetch_data import prep_tests >>> urls, fetch_data = prep_tests() >>> depth_file = fetch_data(urls['left_travel_depth'], '', '.vtk') >>> depth_threshold = 2.36089 >>> min_fold_size = 50 >>> save_file = True >>> output_file = 'extract_folds.vtk' >>> background_value = -1 >>> verbose = False >>> folds, n_folds, folds_file = extract_folds(depth_file, ... depth_threshold, min_fold_size, save_file, output_file, ... background_value, verbose) >>> n_folds 33 >>> lens = [len([x for x in folds if x == y]) for y in range(n_folds)] >>> lens[0:10] [726, 67241, 2750, 5799, 1151, 6360, 1001, 505, 228, 198] View folds (skip test): >>> from mindboggle.mio.plots import plot_surfaces # doctest: +SKIP >>> plot_surfaces('extract_folds.vtk') # doctest: +SKIP View folds without background (skip test): >>> from mindboggle.mio.plots import plot_surfaces # doctest: +SKIP >>> from mindboggle.mio.vtks import rewrite_scalars # doctest: +SKIP >>> rewrite_scalars(depth_file, 'extract_folds_no_background.vtk', folds, ... 'just_folds', folds, -1) # doctest: +SKIP >>> plot_surfaces('extract_folds_no_background.vtk') # doctest: +SKIP """ import os import numpy as np from time import time from mindboggle.mio.vtks import rewrite_scalars, read_vtk from mindboggle.guts.mesh import find_neighbors from mindboggle.guts.segment import segment_regions if verbose: print("Extract folds in surface mesh") t0 = time() # ------------------------------------------------------------------------ # Load depth values for all vertices # ------------------------------------------------------------------------ points, indices, lines, faces, depths, scalar_names, npoints, \ input_vtk = read_vtk(depth_file, return_first=True, return_array=True) # ------------------------------------------------------------------------ # Find the deepest vertices # ------------------------------------------------------------------------ indices_deep = [i for i, x in enumerate(depths) if x >= depth_threshold] if indices_deep: # -------------------------------------------------------------------- # Find neighbors for each vertex # -------------------------------------------------------------------- neighbor_lists = find_neighbors(faces, npoints) # -------------------------------------------------------------------- # Segment deep vertices as an initial set of folds # -------------------------------------------------------------------- if verbose: print(" Segment vertices deeper than {0:.2f} as folds".format( depth_threshold)) t1 = time() folds = segment_regions(indices_deep, neighbor_lists, 1, [], False, False, [], [], [], '', background_value, False) if verbose: print(' ...Segmented folds ({0:.2f} seconds)'.format(time() - t1)) # -------------------------------------------------------------------- # Remove small folds # -------------------------------------------------------------------- if min_fold_size > 1: if verbose: print(' Remove folds smaller than {0}'.format(min_fold_size)) unique_folds = [ x for x in np.unique(folds) if x != background_value ] for nfold in unique_folds: indices_fold = [i for i, x in enumerate(folds) if x == nfold] if len(indices_fold) < min_fold_size: folds[indices_fold] = background_value # -------------------------------------------------------------------- # Find and fill holes in the folds # Note: Surfaces surrounded by folds can be mistaken for holes, # so exclude_range includes outer surface values close to zero. # -------------------------------------------------------------------- # folds = fill_holes(folds, neighbor_lists, values=depths, # exclude_range=[0, min_hole_depth]) # -------------------------------------------------------------------- # Renumber folds so they are sequential. # NOTE: All vertices are included (-1 for non-fold vertices). # -------------------------------------------------------------------- renumber_folds = background_value * np.ones(npoints) fold_numbers = [x for x in np.unique(folds) if x != background_value] for i_fold, n_fold in enumerate(fold_numbers): fold_indices = [i for i, x in enumerate(folds) if x == n_fold] renumber_folds[fold_indices] = i_fold folds = renumber_folds folds = [int(x) for x in folds] n_folds = i_fold + 1 # Print statement if verbose: print(' ...Extracted {0} folds ({1:.2f} seconds)'.format( n_folds, time() - t0)) else: if verbose: print(' No deep vertices') # ------------------------------------------------------------------------ # Return folds, number of folds, file name # ------------------------------------------------------------------------ if save_file: if output_file: folds_file = output_file else: folds_file = os.path.join(os.getcwd(), 'folds.vtk') rewrite_scalars(depth_file, folds_file, folds, 'folds', [], background_value) if not os.path.exists(folds_file): raise IOError(folds_file + " not found") else: folds_file = None return folds, n_folds, folds_file
def extract_sulci( labels_file, folds_or_file, hemi, min_boundary=1, sulcus_names=[], save_file=False, output_file="", background_value=-1, verbose=False, ): """ Identify sulci from folds in a brain surface according to a labeling protocol that includes a list of label pairs defining each sulcus. Since folds are defined as deep, connected areas of a surface, and since folds may be connected to each other in ways that differ across brains, there usually does not exist a one-to-one mapping between folds of one brain and those of another. To address the correspondence problem then, we need to find just those portions of the folds that correspond across brains. To accomplish this, Mindboggle segments folds into sulci, which do have a one-to-one correspondence across non-pathological brains. Mindboggle defines a sulcus as a folded portion of cortex whose opposing banks are labeled with one or more sulcus label pairs in the DKT labeling protocol, where each label pair is unique to one sulcus and represents a boundary between two adjacent gyri, and each vertex has one gyrus label. This function assigns vertices in a fold to a sulcus in one of two cases. In the first case, vertices whose labels are in only one label pair in the fold are assigned to the label pair’s sulcus if they are connected through similarly labeled vertices to the boundary between the two labels. In the second case, the segment_regions function propagates labels from label borders to vertices whose labels are in multiple label pairs in the fold. Steps for each fold :: 1. Remove fold if it has fewer than two labels. 2. Remove fold if its labels do not contain a sulcus label pair. 3. Find vertices with labels that are in only one of the fold's label boundary pairs. Assign the vertices the sulcus with the label pair if they are connected to the label boundary for that pair. 4. If there are remaining vertices, segment into sets of vertices connected to label boundaries, and assign a unique ID to each set. Parameters ---------- labels_file : string file name for surface mesh VTK containing labels for all vertices folds_or_file : numpy array, list or string fold number for each vertex / name of VTK file containing fold scalars hemi : string hemisphere abbreviation in {'lh', 'rh'} for sulcus labels min_boundary : integer minimum number of vertices for a sulcus label boundary segment sulcus_names : list of strings names of sulci save_file : bool save output VTK file? output_file : string name of output file in VTK format background_value : integer or float background value verbose : bool print statements? Returns ------- sulci : list of integers sulcus numbers for all vertices (-1 for non-sulcus vertices) n_sulci : integers number of sulci sulci_file : string output VTK file with sulcus numbers (-1 for non-sulcus vertices) Examples -------- >>> # Example 1: Extract sulcus from a fold with one sulcus label pair: >>> import numpy as np >>> from mindboggle.features.sulci import extract_sulci >>> from mindboggle.mio.vtks import read_scalars >>> from mindboggle.mio.fetch_data import prep_tests >>> urls, fetch_data = prep_tests() >>> # Load labels, folds, neighbor lists, and sulcus names and label pairs >>> labels_file = fetch_data(urls['left_freesurfer_labels'], '', '.vtk') >>> folds_file = fetch_data(urls['left_folds'], '', '.vtk') >>> folds_or_file, name = read_scalars(folds_file, True, True) >>> save_file = True >>> output_file = 'extract_sulci_fold4_1sulcus.vtk' >>> background_value = -1 >>> # Limit number of folds to speed up the test: >>> limit_folds = True >>> if limit_folds: ... fold_numbers = [4] #[4, 6] ... i0 = [i for i,x in enumerate(folds_or_file) if x not in fold_numbers] ... folds_or_file[i0] = background_value >>> hemi = 'lh' >>> min_boundary = 10 >>> sulcus_names = [] >>> verbose = False >>> sulci, n_sulci, sulci_file = extract_sulci(labels_file, folds_or_file, ... hemi, min_boundary, sulcus_names, save_file, output_file, ... background_value, verbose) >>> n_sulci # 23 # (if not limit_folds) 1 >>> lens = [len([x for x in sulci if x==y]) ... for y in np.unique(sulci) if y != -1] >>> lens[0:10] # [6358, 3288, 7612, 5205, 4414, 6251, 3493, 2566, 4436, 739] # (if not limit_folds) [1151] View result without background (skip test): >>> from mindboggle.mio.plots import plot_surfaces # doctest: +SKIP >>> from mindboggle.mio.vtks import rewrite_scalars # doctest: +SKIP >>> output = 'extract_sulci_fold4_1sulcus_no_background.vtk' >>> rewrite_scalars(sulci_file, output, sulci, ... 'sulci', sulci) # doctest: +SKIP >>> plot_surfaces(output) # doctest: +SKIP Example 2: Extract sulcus from a fold with multiple sulcus label pairs: >>> folds_or_file, name = read_scalars(folds_file, True, True) >>> output_file = 'extract_sulci_fold7_2sulci.vtk' >>> # Limit number of folds to speed up the test: >>> limit_folds = True >>> if limit_folds: ... fold_numbers = [7] #[4, 6] ... i0 = [i for i,x in enumerate(folds_or_file) if x not in fold_numbers] ... folds_or_file[i0] = background_value >>> sulci, n_sulci, sulci_file = extract_sulci(labels_file, folds_or_file, ... hemi, min_boundary, sulcus_names, save_file, output_file, ... background_value, verbose) >>> n_sulci # 23 # (if not limit_folds) 2 >>> lens = [len([x for x in sulci if x==y]) ... for y in np.unique(sulci) if y != -1] >>> lens[0:10] # [6358, 3288, 7612, 5205, 4414, 6251, 3493, 2566, 4436, 739] # (if not limit_folds) [369, 93] View result without background (skip test): >>> from mindboggle.mio.plots import plot_surfaces # doctest: +SKIP >>> from mindboggle.mio.vtks import rewrite_scalars # doctest: +SKIP >>> output = 'extract_sulci_fold7_2sulci_no_background.vtk' >>> rewrite_scalars(sulci_file, output, sulci, ... 'sulci', sulci) # doctest: +SKIP >>> plot_surfaces(output) # doctest: +SKIP """ import os from time import time import numpy as np from mindboggle.mio.vtks import read_scalars, read_vtk, rewrite_scalars from mindboggle.guts.mesh import find_neighbors from mindboggle.guts.segment import extract_borders, propagate, segment_regions from mindboggle.mio.labels import DKTprotocol # Load fold numbers if folds_or_file is a string: if isinstance(folds_or_file, str): folds, name = read_scalars(folds_or_file) elif isinstance(folds_or_file, list): folds = folds_or_file elif isinstance(folds_or_file, np.ndarray): folds = folds_or_file.tolist() dkt = DKTprotocol() if hemi == "lh": pair_lists = dkt.left_sulcus_label_pair_lists elif hemi == "rh": pair_lists = dkt.right_sulcus_label_pair_lists else: raise IOError("Warning: hemisphere not properly specified ('lh' or 'rh').") # Load points, faces, and neighbors: points, indices, lines, faces, labels, scalar_names, npoints, input_vtk = read_vtk(labels_file) neighbor_lists = find_neighbors(faces, npoints) # Array of sulcus IDs for fold vertices, initialized as -1. # Since we do not touch gyral vertices and vertices whose labels # are not in the label list, or vertices having only one label, # their sulcus IDs will remain -1: sulci = background_value * np.ones(npoints) # ------------------------------------------------------------------------ # Loop through folds # ------------------------------------------------------------------------ fold_numbers = [int(x) for x in np.unique(folds) if x != background_value] n_folds = len(fold_numbers) if verbose: print("Extract sulci from {0} folds...".format(n_folds)) t0 = time() for n_fold in fold_numbers: fold_indices = [i for i, x in enumerate(folds) if x == n_fold] len_fold = len(fold_indices) # List the labels in this fold: fold_labels = [labels[x] for x in fold_indices] unique_fold_labels = [int(x) for x in np.unique(fold_labels) if x != background_value] # -------------------------------------------------------------------- # NO MATCH -- fold has fewer than two labels # -------------------------------------------------------------------- if verbose and len(unique_fold_labels) < 2: # Ignore: sulci already initialized with -1 values: if not unique_fold_labels: print(" Fold {0} ({1} vertices): " "NO MATCH -- fold has no labels".format(n_fold, len_fold)) else: print( " Fold {0} ({1} vertices): " "NO MATCH -- fold has only one label ({2})".format(n_fold, len_fold, unique_fold_labels[0]) ) # Ignore: sulci already initialized with -1 values else: # Find all label boundary pairs within the fold: indices_fold_pairs, fold_pairs, unique_fold_pairs = extract_borders( fold_indices, labels, neighbor_lists, ignore_values=[], return_label_pairs=True ) # Find fold label pairs in the protocol (pairs are already sorted): fold_pairs_in_protocol = [x for x in unique_fold_pairs if x in dkt.unique_sulcus_label_pairs] if verbose and unique_fold_labels: print( " Fold {0} labels: {1} ({2} vertices)".format( n_fold, ", ".join([str(x) for x in unique_fold_labels]), len_fold ) ) # ---------------------------------------------------------------- # NO MATCH -- fold has no sulcus label pair # ---------------------------------------------------------------- if verbose and not fold_pairs_in_protocol: print(" Fold {0}: NO MATCH -- fold has no sulcus label pair".format(n_fold, len_fold)) # ---------------------------------------------------------------- # Possible matches # ---------------------------------------------------------------- else: if verbose: print( " Fold {0} label pairs in protocol: {1}".format( n_fold, ", ".join([str(x) for x in fold_pairs_in_protocol]) ) ) # Labels in the protocol (includes repeats across label pairs): labels_in_pairs = [x for lst in fold_pairs_in_protocol for x in lst] # Labels that appear in one or more sulcus label boundary: unique_labels = [] nonunique_labels = [] for label in np.unique(labels_in_pairs): if len([x for x in labels_in_pairs if x == label]) == 1: unique_labels.append(label) else: nonunique_labels.append(label) # ------------------------------------------------------------ # Vertices whose labels are in only one sulcus label pair # ------------------------------------------------------------ # Find vertices with a label that is in only one of the fold's # label pairs (the other label in the pair can exist in other # pairs). Assign the vertices the sulcus with the label pair # if they are connected to the label boundary for that pair. # ------------------------------------------------------------ if unique_labels: for pair in fold_pairs_in_protocol: # If one or both labels in label pair is/are unique: unique_labels_in_pair = [x for x in pair if x in unique_labels] n_unique = len(unique_labels_in_pair) if n_unique: ID = None for i, pair_list in enumerate(pair_lists): if not isinstance(pair_list, list): pair_list = [pair_list] if pair in pair_list: ID = i break if ID: # Seeds from label boundary vertices # (fold_pairs and pair already sorted): indices_pair = [x for i, x in enumerate(indices_fold_pairs) if fold_pairs[i] == pair] # Vertices with unique label(s) in pair: indices_unique_labels = [ fold_indices[i] for i, x in enumerate(fold_labels) if x in unique_labels_in_pair ] # dkt.unique_sulcus_label_pairs] # Propagate sulcus ID from seeds to vertices # with "unique" labels (only exist in one # label pair in a fold); propagation ensures # that sulci consist of contiguous vertices # for each label boundary: sulci2 = segment_regions( indices_unique_labels, neighbor_lists, min_region_size=1, seed_lists=[indices_pair], keep_seeding=False, spread_within_labels=True, labels=labels, label_lists=[], values=[], max_steps="", background_value=background_value, verbose=False, ) sulci[sulci2 != background_value] = ID # Print statement: if verbose: if n_unique == 1: ps1 = "One label" else: ps1 = "Both labels" if len(sulcus_names): ps2 = sulcus_names[ID] else: ps2 = "" print( " {0} unique to one fold pair: " "{1} {2}".format(ps1, ps2, unique_labels_in_pair) ) # ------------------------------------------------------------ # Vertex labels shared by multiple label pairs # ------------------------------------------------------------ # Propagate labels from label borders to vertices with labels # that are shared by multiple label pairs in the fold. # ------------------------------------------------------------ if len(nonunique_labels): # For each label shared by different label pairs: for label in nonunique_labels: # Print statement: if verbose: print(" Propagate sulcus borders with label {0}".format(int(label))) # Construct seeds from label boundary vertices: seeds = background_value * np.ones(npoints) for ID, pair_list in enumerate(pair_lists): if not isinstance(pair_list, list): pair_list = [pair_list] label_pairs = [x for x in pair_list if label in x] for label_pair in label_pairs: indices_pair = [ x for i, x in enumerate(indices_fold_pairs) if np.sort(fold_pairs[i]).tolist() == label_pair ] if indices_pair: # Do not include short boundary segments: if min_boundary > 1: indices_pair2 = [] seeds2 = segment_regions( indices_pair, neighbor_lists, 1, [], False, False, [], [], [], "", background_value, verbose, ) useeds2 = [x for x in np.unique(seeds2) if x != background_value] for seed2 in useeds2: iseed2 = [i for i, x in enumerate(seeds2) if x == seed2] if len(iseed2) >= min_boundary: indices_pair2.extend(iseed2) elif verbose: if len(iseed2) == 1: print( " Remove " "assignment " "of ID {0} from " "1 vertex".format(seed2) ) else: print( " Remove " "assignment " "of ID {0} from " "{1} vertices".format(seed2, len(iseed2)) ) indices_pair = indices_pair2 # Assign sulcus IDs to seeds: seeds[indices_pair] = ID # Identify vertices with the label: indices_label = [fold_indices[i] for i, x in enumerate(fold_labels) if x == label] if len(indices_label): # Propagate sulcus ID from seeds to vertices # with a given shared label: seg_vs_prop = False if seg_vs_prop: indices_seeds = [] for seed in [x for x in np.unique(seeds) if x != background_value]: indices_seeds.append([i for i, x in enumerate(seeds) if x == seed]) sulci2 = segment_regions( indices_label, neighbor_lists, 50, indices_seeds, False, True, labels, [], [], "", background_value, verbose, ) else: label_array = background_value * np.ones(npoints) label_array[indices_label] = 1 sulci2 = propagate( points, faces, label_array, seeds, sulci, max_iters=10000, tol=0.001, sigma=5, background_value=background_value, verbose=verbose, ) sulci[sulci2 != background_value] = sulci2[sulci2 != background_value] sulcus_numbers = [int(x) for x in np.unique(sulci) if x != background_value] n_sulci = len(sulcus_numbers) # ------------------------------------------------------------------------ # Print statements # ------------------------------------------------------------------------ if verbose: if n_sulci == 1: sulcus_str = "sulcus" else: sulcus_str = "sulci" if n_folds == 1: folds_str = "fold" else: folds_str = "folds" print("Extracted {0} {1} from {2} {3} ({4:.1f}s):".format(n_sulci, sulcus_str, n_folds, folds_str, time() - t0)) if sulcus_names: for sulcus_number in sulcus_numbers: print(" {0}: {1}".format(sulcus_number, sulcus_names[sulcus_number])) elif sulcus_numbers: print(" " + ", ".join([str(x) for x in sulcus_numbers])) unresolved = [i for i in range(len(pair_lists)) if i not in sulcus_numbers] if len(unresolved) == 1: print("The following sulcus is unaccounted for:") else: print("The following {0} sulci are unaccounted for:".format(len(unresolved))) if sulcus_names: for sulcus_number in unresolved: print(" {0}: {1}".format(sulcus_number, sulcus_names[sulcus_number])) else: print(" " + ", ".join([str(x) for x in unresolved])) # ------------------------------------------------------------------------ # Return sulci, number of sulci, and file name # ------------------------------------------------------------------------ sulci = [int(x) for x in sulci] sulci_file = os.path.join(os.getcwd(), "sulci.vtk") rewrite_scalars(labels_file, sulci_file, sulci, "sulci", [], background_value) if not os.path.exists(sulci_file): raise IOError(sulci_file + " not found") return sulci, n_sulci, sulci_file