def teardown_module(): distributedTool.release()
def test(cloud_args=None): """test""" args = parse_args(cloud_args) context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True, device_target=args.platform, save_graphs=False) if os.getenv('DEVICE_ID', "not_set").isdigit(): context.set_context(device_id=int(os.getenv('DEVICE_ID'))) # init distributed if args.is_distributed: parallel_mode = ParallelMode.DATA_PARALLEL context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=args.group_size, gradients_mean=True) args.logger.save_args(args) # network args.logger.important_info('start create network') if os.path.isdir(args.pretrained): models = list(glob.glob(os.path.join(args.pretrained, '*.ckpt'))) print(models) if args.graph_ckpt: f = lambda x: -1 * int( os.path.splitext(os.path.split(x)[-1])[0].split('-')[-1].split( '_')[0]) else: f = lambda x: -1 * int( os.path.splitext(os.path.split(x)[-1])[0].split('_')[-1]) args.models = sorted(models, key=f) else: args.models = [ args.pretrained, ] for model in args.models: de_dataset = classification_dataset(args.data_dir, image_size=args.image_size, per_batch_size=args.per_batch_size, max_epoch=1, rank=args.rank, group_size=args.group_size, mode='eval') eval_dataloader = de_dataset.create_tuple_iterator(output_numpy=True) network = get_network(args.backbone, args.num_classes, platform=args.platform) if network is None: raise NotImplementedError('not implement {}'.format(args.backbone)) load_pretrain_model(model, network, args) img_tot = 0 top1_correct = 0 top5_correct = 0 if args.platform == "Ascend": network.to_float(mstype.float16) else: auto_mixed_precision(network) network.set_train(False) t_end = time.time() it = 0 for data, gt_classes in eval_dataloader: output = network(Tensor(data, mstype.float32)) output = output.asnumpy() top1_output = np.argmax(output, (-1)) top5_output = np.argsort(output)[:, -5:] t1_correct = np.equal(top1_output, gt_classes).sum() top1_correct += t1_correct top5_correct += get_top5_acc(top5_output, gt_classes) img_tot += args.per_batch_size if args.rank == 0 and it == 0: t_end = time.time() it = 1 if args.rank == 0: time_used = time.time() - t_end fps = (img_tot - args.per_batch_size) * args.group_size / time_used args.logger.info( 'Inference Performance: {:.2f} img/sec'.format(fps)) results = get_result(args, model, top1_correct, top5_correct, img_tot) top1_correct = results[0, 0] top5_correct = results[1, 0] img_tot = results[2, 0] acc1 = 100.0 * top1_correct / img_tot acc5 = 100.0 * top5_correct / img_tot args.logger.info('after allreduce eval: top1_correct={}, tot={},' 'acc={:.2f}%(TOP1)'.format(top1_correct, img_tot, acc1)) args.logger.info('after allreduce eval: top5_correct={}, tot={},' 'acc={:.2f}%(TOP5)'.format(top5_correct, img_tot, acc5)) if args.is_distributed: release()
def _ascend_analyse(self): """Collect and analyse ascend performance data""" release() job_id = self._get_profiling_job_id() logger.info("Profiling: job id is %s ", job_id) source_path = os.path.join(self._output_path, job_id) # parse hwts.log.data.45.dev file, and get task profiling data hwts_output_filename = self._hwts_output_filename_target + self._dev_id + ".txt" hwts_output_filename = os.path.join(self._output_path, hwts_output_filename) source_path = validate_and_normalize_path(source_path) hwts_output_filename = validate_and_normalize_path( hwts_output_filename) hwtslog_parser = HWTSLogParser(source_path, hwts_output_filename) hwtslog_parser.execute() # parse Framework file, and get the relation of op and tasks framework_parser = FrameworkParser(job_id, self._dev_id, self._output_path) framework_parser.parse() op_task_dict = framework_parser.to_task_id_full_op_name_dict() if not op_task_dict: logger.error("Profiling: fail to parse framework files.") return # get op compute time from hwts data and framework data, write output_op_compute_time.txt opcompute_output_filename = self._opcompute_output_filename_target + self._dev_id + ".txt" opcompute_output_filename = os.path.join(self._output_path, opcompute_output_filename) opcompute_output_filename = validate_and_normalize_path( opcompute_output_filename) optime_parser = OPComputeTimeParser(hwts_output_filename, opcompute_output_filename, op_task_dict, self._output_path, self._dev_id) optime_parser.execute() # parse DATA_PREPROCESS.dev.AICPU file, write output_data_preprocess_aicpu_x.txt output_data_preprocess_aicpu = self._aicpu_op_output_filename_target + self._dev_id + ".txt" output_data_preprocess_aicpu = os.path.join( self._output_path, output_data_preprocess_aicpu) output_data_preprocess_aicpu = validate_and_normalize_path( output_data_preprocess_aicpu) aicpu_data_parser = DataPreProcessParser(source_path, output_data_preprocess_aicpu) aicpu_data_parser.execute() # Parsing minddata AICPU profiling MinddataParser.execute(source_path, self._output_path, self._dev_id) # parse minddata pipeline operator and queue try: pipeline_parser = MinddataPipelineParser(self._output_path, self._dev_id, self._output_path) pipeline_parser.parse() except ProfilerException as err: logger.warning(err.message) # analyse op compute time info try: self._analyser_op_info() except ProfilerException as err: logger.warning(err.message) # analyse step trace info points = None try: points = self._analyse_step_trace(source_path, framework_parser) except ProfilerException as err: logger.warning(err.message) # analyse timeline info try: self._analyse_timeline(aicpu_data_parser, optime_parser, source_path) except (ProfilerIOException, ProfilerFileNotFoundException, RuntimeError) as err: logger.warning('Fail to write timeline data: %s', err) # analyse memory usage info try: self._analyse_memory_usage(points) except (ProfilerIOException, ProfilerFileNotFoundException, ProfilerRawFileException) as err: logger.warning(err.message) os.environ['PROFILING_MODE'] = str("false") context.set_context(enable_profiling=False)
def test(cloud_args=None): """test""" args = parse_args(cloud_args) context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True, device_target=args.platform, save_graphs=False) if os.getenv('DEVICE_ID', "not_set").isdigit(): context.set_context(device_id=int(os.getenv('DEVICE_ID'))) # init distributed if args.is_distributed: init() args.rank = get_rank() args.group_size = get_group_size() parallel_mode = ParallelMode.DATA_PARALLEL context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=args.group_size, parameter_broadcast=True, mirror_mean=True) else: args.rank = 0 args.group_size = 1 args.outputs_dir = os.path.join( args.log_path, datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S')) args.logger = get_logger(args.outputs_dir, args.rank) args.logger.save_args(args) # network args.logger.important_info('start create network') if os.path.isdir(args.pretrained): models = list(glob.glob(os.path.join(args.pretrained, '*.ckpt'))) print(models) if args.graph_ckpt: f = lambda x: -1 * int( os.path.splitext(os.path.split(x)[-1])[0].split('-')[-1].split( '_')[0]) else: f = lambda x: -1 * int( os.path.splitext(os.path.split(x)[-1])[0].split('_')[-1]) args.models = sorted(models, key=f) else: args.models = [ args.pretrained, ] for model in args.models: de_dataset = classification_dataset(args.data_dir, image_size=args.image_size, per_batch_size=args.per_batch_size, max_epoch=1, rank=args.rank, group_size=args.group_size, mode='eval') eval_dataloader = de_dataset.create_tuple_iterator() network = get_network(args.backbone, args.num_classes, platform=args.platform) if network is None: raise NotImplementedError('not implement {}'.format(args.backbone)) param_dict = load_checkpoint(model) param_dict_new = {} for key, values in param_dict.items(): if key.startswith('moments.'): continue elif key.startswith('network.'): param_dict_new[key[8:]] = values else: param_dict_new[key] = values load_param_into_net(network, param_dict_new) args.logger.info('load model {} success'.format(model)) img_tot = 0 top1_correct = 0 top5_correct = 0 if args.platform == "Ascend": network.to_float(mstype.float16) else: auto_mixed_precision(network) network.set_train(False) t_end = time.time() it = 0 for data, gt_classes in eval_dataloader: output = network(Tensor(data, mstype.float32)) output = output.asnumpy() top1_output = np.argmax(output, (-1)) top5_output = np.argsort(output)[:, -5:] t1_correct = np.equal(top1_output, gt_classes).sum() top1_correct += t1_correct top5_correct += get_top5_acc(top5_output, gt_classes) img_tot += args.per_batch_size if args.rank == 0 and it == 0: t_end = time.time() it = 1 if args.rank == 0: time_used = time.time() - t_end fps = (img_tot - args.per_batch_size) * args.group_size / time_used args.logger.info( 'Inference Performance: {:.2f} img/sec'.format(fps)) results = [[top1_correct], [top5_correct], [img_tot]] args.logger.info('before results={}'.format(results)) if args.is_distributed: model_md5 = model.replace('/', '') tmp_dir = '/cache' if not os.path.exists(tmp_dir): os.mkdir(tmp_dir) top1_correct_npy = '/cache/top1_rank_{}_{}.npy'.format( args.rank, model_md5) top5_correct_npy = '/cache/top5_rank_{}_{}.npy'.format( args.rank, model_md5) img_tot_npy = '/cache/img_tot_rank_{}_{}.npy'.format( args.rank, model_md5) np.save(top1_correct_npy, top1_correct) np.save(top5_correct_npy, top5_correct) np.save(img_tot_npy, img_tot) while True: rank_ok = True for other_rank in range(args.group_size): top1_correct_npy = '/cache/top1_rank_{}_{}.npy'.format( other_rank, model_md5) top5_correct_npy = '/cache/top5_rank_{}_{}.npy'.format( other_rank, model_md5) img_tot_npy = '/cache/img_tot_rank_{}_{}.npy'.format( other_rank, model_md5) if not os.path.exists(top1_correct_npy) or not os.path.exists(top5_correct_npy) or \ not os.path.exists(img_tot_npy): rank_ok = False if rank_ok: break top1_correct_all = 0 top5_correct_all = 0 img_tot_all = 0 for other_rank in range(args.group_size): top1_correct_npy = '/cache/top1_rank_{}_{}.npy'.format( other_rank, model_md5) top5_correct_npy = '/cache/top5_rank_{}_{}.npy'.format( other_rank, model_md5) img_tot_npy = '/cache/img_tot_rank_{}_{}.npy'.format( other_rank, model_md5) top1_correct_all += np.load(top1_correct_npy) top5_correct_all += np.load(top5_correct_npy) img_tot_all += np.load(img_tot_npy) results = [[top1_correct_all], [top5_correct_all], [img_tot_all]] results = np.array(results) else: results = np.array(results) args.logger.info('after results={}'.format(results)) top1_correct = results[0, 0] top5_correct = results[1, 0] img_tot = results[2, 0] acc1 = 100.0 * top1_correct / img_tot acc5 = 100.0 * top5_correct / img_tot args.logger.info('after allreduce eval: top1_correct={}, tot={},' 'acc={:.2f}%(TOP1)'.format(top1_correct, img_tot, acc1)) args.logger.info('after allreduce eval: top5_correct={}, tot={},' 'acc={:.2f}%(TOP5)'.format(top5_correct, img_tot, acc5)) if args.is_distributed: release()
def _release_parallel(self): if self._init_parallel_flag: release()
def analyse(self): """ Collect and analyse performance data, called after training or during training. Examples: >>> from mindspore.profiler import Profiler >>> import mindspore.context >>> context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", >>> device_id=int(os.environ["DEVICE_ID"])) >>> profiler = Profiler(subgraph='all', is_detail=True, is_show_op_path=False, output_path='./data') >>> model = Model() >>> model.train() >>> profiler.analyse() """ release() job_id = self._get_profiling_job_id() logger.info("Profiling: job id is %s ", job_id) source_path = os.path.join(PROFILING_LOG_BASE_PATH, job_id) # parse hwts.log.data.45.dev file, and get task profiling data hwts_output_filename = self._hwts_output_filename_target + self._dev_id + ".txt" hwts_output_filename = os.path.join(self._output_path, hwts_output_filename) hwtslog_parser = HWTSLogParser(source_path, hwts_output_filename) result = hwtslog_parser.execute() if not result: logger.error("Profiling: fail to parse hwts log file.") return # parse Framework file, and get the relation of op and tasks framework_parser = FrameworkParser(job_id, self._dev_id, self._output_path) framework_parser.parse() op_task_dict = framework_parser.to_task_id_full_op_name_dict() if not op_task_dict: logger.error("Profiling: fail to parse framework files.") return # get op compute time from hwts data and framework data, write output_op_compute_time.txt opcompute_output_filename = self._opcompute_output_filename_target + self._dev_id + ".txt" opcompute_output_filename = os.path.join(self._output_path, opcompute_output_filename) optime_parser = OPComputeTimeParser(hwts_output_filename, opcompute_output_filename, op_task_dict, self._output_path, self._dev_id) optime_parser.execute() # parse DATA_PREPROCESS.dev.AICPU file, write output_data_preprocess_aicpu_x.txt output_data_preprocess_aicpu = self._aicpu_op_output_filename_target + self._dev_id + ".txt" output_data_preprocess_aicpu = os.path.join( self._output_path, output_data_preprocess_aicpu) aicpu_data_parser = DataPreProcessParser(source_path, output_data_preprocess_aicpu) aicpu_data_parser.execute() # Parsing minddata AICPU profiling MinddataParser.execute(source_path, self._output_path, self._dev_id) # parse minddata pipeline operator and queue try: pipeline_parser = MinddataPipelineParser(self._output_path, self._dev_id, self._output_path) pipeline_parser.parse() except ProfilerException as err: logger.warning(err.message) # analyse op compute time info try: self._analyser_op_info() except ProfilerException as err: logger.warning(err.message) # analyse step trace info try: self._analyse_step_trace(source_path, framework_parser) except ProfilerException as err: logger.warning(err.message) # analyse timeline info try: self._analyse_timeline(aicpu_data_parser, optime_parser) except (ProfilerIOException, ProfilerFileNotFoundException, RuntimeError) as err: logger.warning('Fail to write timeline data: %s', err)
def analyse(self): """ Collect and analyse performance data, called after training or during training. Examples: >>> from mindspore.profiler import Profiler >>> import mindspore.context >>> context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", >>> device_id=int(os.environ["DEVICE_ID"])) >>> profiler = Profiler() >>> model = Model() >>> model.train() >>> profiler.analyse() """ if self._device_target and self._device_target == "GPU": if context.get_auto_parallel_context( 'device_num') > 1 and self._dev_id != get_rank(): self._dev_id = get_rank() logger.error( 'Please check the Profiler object initialized after set_auto_parallel_context() ' 'and init(). Profiler should be initialized after these code. ' ) self._gpu_profiler.stop() timeline_generator = self._generate_timeline() # parse minddata pipeline operator and queue for GPU try: pipeline_parser = MinddataPipelineParser( self._output_path, self._dev_id, self._output_path) pipeline_parser.parse() except ProfilerException as err: logger.warning(err.message) # analyse step trace info try: self._analyse_step_trace( is_training_mode_flag=timeline_generator.check_op_name( 'Gradients')) except ProfilerException as err: logger.warning(err.message) os.environ['PROFILING_MODE'] = str("false") elif self._device_target and self._device_target == "Ascend": release() job_id = self._get_profiling_job_id() logger.info("Profiling: job id is %s ", job_id) source_path = os.path.join(self._output_path, job_id) # parse hwts.log.data.45.dev file, and get task profiling data hwts_output_filename = self._hwts_output_filename_target + self._dev_id + ".txt" hwts_output_filename = os.path.join(self._output_path, hwts_output_filename) source_path = validate_and_normalize_path(source_path) hwts_output_filename = validate_and_normalize_path( hwts_output_filename) hwtslog_parser = HWTSLogParser(source_path, hwts_output_filename) _ = hwtslog_parser.execute() # parse Framework file, and get the relation of op and tasks framework_parser = FrameworkParser(job_id, self._dev_id, self._output_path) framework_parser.parse() op_task_dict = framework_parser.to_task_id_full_op_name_dict() if not op_task_dict: logger.error("Profiling: fail to parse framework files.") return # get op compute time from hwts data and framework data, write output_op_compute_time.txt opcompute_output_filename = self._opcompute_output_filename_target + self._dev_id + ".txt" opcompute_output_filename = os.path.join( self._output_path, opcompute_output_filename) opcompute_output_filename = validate_and_normalize_path( opcompute_output_filename) optime_parser = OPComputeTimeParser(hwts_output_filename, opcompute_output_filename, op_task_dict, self._output_path, self._dev_id) optime_parser.execute() # parse DATA_PREPROCESS.dev.AICPU file, write output_data_preprocess_aicpu_x.txt output_data_preprocess_aicpu = self._aicpu_op_output_filename_target + self._dev_id + ".txt" output_data_preprocess_aicpu = os.path.join( self._output_path, output_data_preprocess_aicpu) output_data_preprocess_aicpu = validate_and_normalize_path( output_data_preprocess_aicpu) aicpu_data_parser = DataPreProcessParser( source_path, output_data_preprocess_aicpu) aicpu_data_parser.execute() # Parsing minddata AICPU profiling MinddataParser.execute(source_path, self._output_path, self._dev_id) # parse minddata pipeline operator and queue try: pipeline_parser = MinddataPipelineParser( self._output_path, self._dev_id, self._output_path) pipeline_parser.parse() except ProfilerException as err: logger.warning(err.message) # analyse op compute time info try: self._analyser_op_info() except ProfilerException as err: logger.warning(err.message) # analyse step trace info try: self._analyse_step_trace(source_path, framework_parser) except ProfilerException as err: logger.warning(err.message) # analyse timeline info try: self._analyse_timeline(aicpu_data_parser, optime_parser) except (ProfilerIOException, ProfilerFileNotFoundException, RuntimeError) as err: logger.warning('Fail to write timeline data: %s', err) os.environ['PROFILING_MODE'] = str("false") context.set_context(enable_profiling=False)
def test_train(): ''' finetune function pytest -s finetune.py::test_train ''' devid = int(os.getenv('DEVICE_ID')) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=devid, enable_mem_reuse=True, enable_task_sink=True) #BertCLSTrain for classification #BertNERTrain for sequence labeling if cfg.task == 'NER': if cfg.use_crf: netwithloss = BertNER(bert_net_cfg, True, num_labels=len(tag_to_index), use_crf=True, tag_to_index=tag_to_index, dropout_prob=0.1) else: netwithloss = BertNER(bert_net_cfg, True, num_labels=cfg.num_labels, dropout_prob=0.1) else: netwithloss = BertCLS(bert_net_cfg, True, num_labels=cfg.num_labels, dropout_prob=0.1) dataset = get_dataset(bert_net_cfg.batch_size, cfg.epoch_num) # optimizer steps_per_epoch = dataset.get_dataset_size() if cfg.optimizer == 'AdamWeightDecayDynamicLR': optimizer = AdamWeightDecayDynamicLR( netwithloss.trainable_params(), decay_steps=steps_per_epoch * cfg.epoch_num, learning_rate=cfg.AdamWeightDecayDynamicLR.learning_rate, end_learning_rate=cfg.AdamWeightDecayDynamicLR.end_learning_rate, power=cfg.AdamWeightDecayDynamicLR.power, warmup_steps=steps_per_epoch, weight_decay=cfg.AdamWeightDecayDynamicLR.weight_decay, eps=cfg.AdamWeightDecayDynamicLR.eps) elif cfg.optimizer == 'Lamb': optimizer = Lamb(netwithloss.trainable_params(), decay_steps=steps_per_epoch * cfg.epoch_num, start_learning_rate=cfg.Lamb.start_learning_rate, end_learning_rate=cfg.Lamb.end_learning_rate, power=cfg.Lamb.power, warmup_steps=steps_per_epoch, decay_filter=cfg.Lamb.decay_filter) elif cfg.optimizer == 'Momentum': optimizer = Momentum(netwithloss.trainable_params(), learning_rate=cfg.Momentum.learning_rate, momentum=cfg.Momentum.momentum) else: raise Exception("Optimizer not supported.") # load checkpoint into network ckpt_config = CheckpointConfig(save_checkpoint_steps=steps_per_epoch, keep_checkpoint_max=1) ckpoint_cb = ModelCheckpoint(prefix=cfg.ckpt_prefix, directory=cfg.ckpt_dir, config=ckpt_config) param_dict = load_checkpoint(cfg.pre_training_ckpt) load_param_into_net(netwithloss, param_dict) update_cell = DynamicLossScaleUpdateCell(loss_scale_value=2**32, scale_factor=2, scale_window=1000) netwithgrads = BertFinetuneCell(netwithloss, optimizer=optimizer, scale_update_cell=update_cell) model = Model(netwithgrads) model.train(cfg.epoch_num, dataset, callbacks=[LossCallBack(), ckpoint_cb]) D.release()
def test(cloud_args=None): """ network eval function. Get top1 and top5 ACC from classification. The result will be save at [./outputs] by default. """ args = parse_args(cloud_args) context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, save_graphs=True) if args.device_target == 'Ascend': devid = int(os.getenv('DEVICE_ID')) context.set_context(device_id=devid) # init distributed if args.is_distributed: init() args.rank = get_rank() args.group_size = get_group_size() args.outputs_dir = os.path.join( args.log_path, datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S')) args.logger = get_logger(args.outputs_dir, args.rank) args.logger.save_args(args) # network args.logger.important_info('start create network') if os.path.isdir(args.pretrained): models = list(glob.glob(os.path.join(args.pretrained, '*.ckpt'))) f = lambda x: -1 * int( os.path.splitext(os.path.split(x)[-1])[0].split('-')[-1].split('_') [0]) args.models = sorted(models, key=f) else: args.models = [ args.pretrained, ] for model in args.models: de_dataset = classification_dataset(args.data_dir, image_size=args.image_size, per_batch_size=args.per_batch_size, max_epoch=1, rank=args.rank, group_size=args.group_size, mode='eval') eval_dataloader = de_dataset.create_tuple_iterator() network = DenseNet121(args.num_classes) param_dict = load_checkpoint(model) param_dict_new = {} for key, values in param_dict.items(): if key.startswith('moments.'): continue elif key.startswith('network.'): param_dict_new[key[8:]] = values else: param_dict_new[key] = values load_param_into_net(network, param_dict_new) args.logger.info('load model {} success'.format(model)) if args.device_target == 'Ascend': network.add_flags_recursive(fp16=True) img_tot = 0 top1_correct = 0 top5_correct = 0 network.set_train(False) for data, gt_classes in eval_dataloader: output = network(Tensor(data, mstype.float32)) output = output.asnumpy() gt_classes = gt_classes.asnumpy() top1_output = np.argmax(output, (-1)) top5_output = np.argsort(output)[:, -5:] t1_correct = np.equal(top1_output, gt_classes).sum() top1_correct += t1_correct top5_correct += get_top5_acc(top5_output, gt_classes) img_tot += args.per_batch_size results = [[top1_correct], [top5_correct], [img_tot]] args.logger.info('before results={}'.format(results)) if args.is_distributed: results = generate_results(model, args.rank, args.group_size, top1_correct, top5_correct, img_tot) results = np.array(results) else: results = np.array(results) args.logger.info('after results={}'.format(results)) top1_correct = results[0, 0] top5_correct = results[1, 0] img_tot = results[2, 0] acc1 = 100.0 * top1_correct / img_tot acc5 = 100.0 * top5_correct / img_tot args.logger.info( 'after allreduce eval: top1_correct={}, tot={}, acc={:.2f}%'. format(top1_correct, img_tot, acc1)) args.logger.info( 'after allreduce eval: top5_correct={}, tot={}, acc={:.2f}%'. format(top5_correct, img_tot, acc5)) if args.is_distributed: release()
def _release_parallel(self): release()
def test(cloud_args=None): """ network eval function. Get top1 and top5 ACC from classification. The result will be save at [./outputs] by default. """ args = parse_args(cloud_args) # init distributed if args.is_distributed: init() args.rank = get_rank() args.group_size = get_group_size() args.outputs_dir = os.path.join( args.log_path, datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S')) args.logger = get_logger(args.outputs_dir, args.rank) args.logger.save_args(args) # network args.logger.important_info('start create network') if os.path.isdir(args.pretrained): models = list(glob.glob(os.path.join(args.pretrained, '*.ckpt'))) f = lambda x: -1 * int( os.path.splitext(os.path.split(x)[-1])[0].split('-')[-1].split('_') [0]) args.models = sorted(models, key=f) else: args.models = [ args.pretrained, ] for model in args.models: de_dataset = classification_dataset(args.data_dir, image_size=args.image_size, per_batch_size=args.per_batch_size, max_epoch=1, rank=args.rank, group_size=args.group_size, mode='eval') eval_dataloader = de_dataset.create_tuple_iterator() network = DenseNet121(args.num_classes) param_dict = load_checkpoint(model) param_dict_new = {} for key, values in param_dict.items(): if key.startswith('moments.'): continue elif key.startswith('network.'): param_dict_new[key[8:]] = values else: param_dict_new[key] = values load_param_into_net(network, param_dict_new) args.logger.info('load model {} success'.format(model)) network.add_flags_recursive(fp16=True) img_tot = 0 top1_correct = 0 top5_correct = 0 network.set_train(False) for data, gt_classes in eval_dataloader: output = network(Tensor(data, mstype.float32)) output = output.asnumpy() gt_classes = gt_classes.asnumpy() top1_output = np.argmax(output, (-1)) top5_output = np.argsort(output)[:, -5:] t1_correct = np.equal(top1_output, gt_classes).sum() top1_correct += t1_correct top5_correct += get_top5_acc(top5_output, gt_classes) img_tot += args.per_batch_size results = [[top1_correct], [top5_correct], [img_tot]] args.logger.info('before results={}'.format(results)) if args.is_distributed: model_md5 = model.replace('/', '') tmp_dir = '../cache' if not os.path.exists(tmp_dir): os.mkdir(tmp_dir) top1_correct_npy = '{}/top1_rank_{}_{}.npy'.format( tmp_dir, args.rank, model_md5) top5_correct_npy = '{}/top5_rank_{}_{}.npy'.format( tmp_dir, args.rank, model_md5) img_tot_npy = '{}/img_tot_rank_{}_{}.npy'.format( tmp_dir, args.rank, model_md5) np.save(top1_correct_npy, top1_correct) np.save(top5_correct_npy, top5_correct) np.save(img_tot_npy, img_tot) while True: rank_ok = True for other_rank in range(args.group_size): top1_correct_npy = '{}/top1_rank_{}_{}.npy'.format( tmp_dir, other_rank, model_md5) top5_correct_npy = '{}/top5_rank_{}_{}.npy'.format( tmp_dir, other_rank, model_md5) img_tot_npy = '{}/img_tot_rank_{}_{}.npy'.format( tmp_dir, other_rank, model_md5) if not os.path.exists(top1_correct_npy) or not os.path.exists(top5_correct_npy) \ or not os.path.exists(img_tot_npy): rank_ok = False if rank_ok: break top1_correct_all = 0 top5_correct_all = 0 img_tot_all = 0 for other_rank in range(args.group_size): top1_correct_npy = '{}/top1_rank_{}_{}.npy'.format( tmp_dir, other_rank, model_md5) top5_correct_npy = '{}/top5_rank_{}_{}.npy'.format( tmp_dir, other_rank, model_md5) img_tot_npy = '{}/img_tot_rank_{}_{}.npy'.format( tmp_dir, other_rank, model_md5) top1_correct_all += np.load(top1_correct_npy) top5_correct_all += np.load(top5_correct_npy) img_tot_all += np.load(img_tot_npy) results = [[top1_correct_all], [top5_correct_all], [img_tot_all]] results = np.array(results) else: results = np.array(results) args.logger.info('after results={}'.format(results)) top1_correct = results[0, 0] top5_correct = results[1, 0] img_tot = results[2, 0] acc1 = 100.0 * top1_correct / img_tot acc5 = 100.0 * top5_correct / img_tot args.logger.info( 'after allreduce eval: top1_correct={}, tot={}, acc={:.2f}%'. format(top1_correct, img_tot, acc1)) args.logger.info( 'after allreduce eval: top5_correct={}, tot={}, acc={:.2f}%'. format(top5_correct, img_tot, acc5)) if args.is_distributed: release()
def analyse(self): """ Collect and analyse performance data, called after training or during training. Examples: >>> from mindinsight.profiler import Profiler >>> context.set_context(mode=context.GRAPH_MODE, device_target=“Ascend”, >>> device_id=int(os.environ["DEVICE_ID"])) >>> profiler = Profiler(subgraph='all', is_detail=True, is_show_op_path=False, output_path='./data') >>> model = Model(train_network) >>> dataset = get_dataset() >>> model.train(2, dataset) >>> profiler.analyse() """ try: from mindspore.communication.management import release release() except ImportError: logger.error("Profiling: fail to import release from mindspore.") logger.info("begin profiler analyse") job_id = self._get_profiling_job_id() if not job_id: msg = ("Fail to get profiling job, please check whether job dir was generated under path %s" \ % PROFILING_LOG_BASE_PATH) raise RuntimeError(msg) logger.info("Profiling: job id is %s ", job_id) source_path = os.path.join(PROFILING_LOG_BASE_PATH, job_id) # parse hwts.log.data.45.dev file, and get task profiling data hwts_output_filename = self._hwts_output_filename_target + self._dev_id + ".txt" hwts_output_filename = os.path.join(self._output_path, hwts_output_filename) hwtslog_parser = HWTSLogParser(source_path, hwts_output_filename) result = hwtslog_parser.execute() if not result: logger.error("Profiling: fail to parse hwts log file.") return # parse Framework file, and get the relation of op and tasks framework_parser = FrameworkParser(job_id, self._dev_id, self._output_path) framework_parser.parse() op_task_dict = framework_parser.to_task_id_full_op_name_dict() if not op_task_dict: logger.error("Profiling: fail to parse framework files.") return # get op compute time from hwts data and framework data, write output_op_compute_time.txt opcompute_output_filename = self._opcompute_output_filename_target + self._dev_id + ".txt" opcompute_output_filename = os.path.join(self._output_path, opcompute_output_filename) optime_parser = OPComputeTimeParser(hwts_output_filename, opcompute_output_filename, op_task_dict) optime_parser.execute() # parse DATA_PREPROCESS.dev.AICPU file, write output_data_preprocess_aicpu_x.txt output_data_preprocess_aicpu = self._aicpu_op_output_filename_target + self._dev_id + ".txt" output_data_preprocess_aicpu = os.path.join(self._output_path, output_data_preprocess_aicpu) try: aicpu_data_parser = DataPreProcessParser(source_path, output_data_preprocess_aicpu) aicpu_data_parser.execute() except FileNotFoundError as err: logger.exception(err) # analyse op compute time info try: self._analyser_op_info() except MindInsightException as err: logger.error(err.message)