Example #1
0
    def __init__(self, config):
        super(GetMaskedLMOutput, self).__init__()
        self.width = config.hidden_size
        self.reshape = P.Reshape()
        self.gather = P.GatherV2()

        weight_init = TruncatedNormal(config.initializer_range)
        self.dense = Dense_Thor(in_channels=self.width,
                                out_channels=config.hidden_size,
                                weight_init=weight_init,
                                has_bias=True,
                                bias_init='zeros',
                                damping=damping,
                                loss_scale=loss_scale,
                                frequency=frequency,
                                activation=config.hidden_act,
                                batch_size=batch_size).to_float(
                                    config.compute_type)
        self.layernorm = nn.LayerNorm(
            (config.hidden_size, )).to_float(config.compute_type)
        self.output_bias = Parameter(initializer('zero', config.vocab_size),
                                     name='output_bias')
        self.matmul = P.MatMul(transpose_b=True)
        self.log_softmax = nn.LogSoftmax(axis=-1)
        self.shape_flat_offsets = (-1, 1)
        self.rng = Tensor(
            np.array(range(0, config.batch_size)).astype(np.int32))
        self.last_idx = (-1, )
        self.shape_flat_sequence_tensor = (config.batch_size *
                                           config.seq_length, self.width)
        self.seq_length_tensor = Tensor(
            np.array((config.seq_length, )).astype(np.int32))
        self.cast = P.Cast()
        self.compute_type = config.compute_type
        self.dtype = config.dtype
    def __init__(self, config):
        super(GetMaskedLMOutput, self).__init__()
        self.width = config.hidden_size
        self.reshape = P.Reshape()
        self.gather = P.Gather()

        weight_init = TruncatedNormal(config.initializer_range)
        self.dense = nn.Dense(self.width,
                              config.hidden_size,
                              weight_init=weight_init,
                              activation=config.hidden_act).to_float(config.compute_type)
        self.layernorm = nn.LayerNorm((config.hidden_size,)).to_float(config.compute_type)
        self.output_bias = Parameter(
            initializer(
                'zero',
                config.vocab_size))
        self.matmul = P.MatMul(transpose_b=True)
        self.log_softmax = nn.LogSoftmax(axis=-1)
        self.shape_flat_offsets = (-1, 1)
        self.last_idx = (-1,)
        self.shape_flat_sequence_tensor = (-1, self.width)
        self.seq_length_tensor = Tensor(np.array((config.seq_length,)).astype(np.int32))
        self.cast = P.Cast()
        self.compute_type = config.compute_type
        self.dtype = config.dtype
Example #3
0
 def __init__(self, config):
     super(CrossEntropyLoss, self).__init__()
     self.log_softmax = nn.LogSoftmax(axis=-1)
     self.mean = P.ReduceMean()
     self.sum = P.ReduceSum()
     self.onehot = P.OneHot()
     self.on_value = Tensor(1.0, mstype.float32)
     self.off_value = Tensor(0.0, mstype.float32)
     self.vocab_size = config.vocab_size
Example #4
0
 def construct(self, input_ids):
     """evaluation net"""
     input_mask = F.cast(F.not_equal(input_ids, 0), mstype.float32)
     logits = self.backbone(input_ids, input_mask)
     outputs = None
     if self.generate:
         outputs = nn.LogSoftmax()(logits)
         outputs = F.tensor_pow(np.e, outputs)
     else:
         outputs = self.argmax(logits)
     return outputs
    def __init__(self, config):
        super(PredLogProbs, self).__init__()
        self.width = config.hidden_size
        self.reshape = P.Reshape()

        self.matmul = P.MatMul(transpose_b=True)
        self.log_softmax = nn.LogSoftmax(axis=-1)
        self.shape_flat_sequence_tensor = (config.batch_size * config.seq_length, self.width)
        self.cast = P.Cast()
        self.compute_type = config.compute_type
        self.dtype = config.dtype
        self.get_shape = P.Shape()
Example #6
0
    def __init__(self, config, is_training=True):
        super(Decoder, self).__init__()

        self.vocab_size = config.ch_vocab_size
        self.hidden_size = config.hidden_size

        self.trans = P.Transpose()
        self.perm = (1, 0, 2)
        self.embedding = nn.Embedding(self.vocab_size, self.hidden_size)
        self.gru = GRU(config, is_training=is_training).to_float(mstype.float16)
        self.dense = nn.Dense(self.hidden_size, self.vocab_size)
        self.softmax = nn.LogSoftmax(axis=2)
        self.cast = P.Cast()
Example #7
0
 def __init__(self,
              batch_size,
              seq_length,
              width,
              compute_type=mstype.float32,
              dtype=mstype.float32):
     super(PredLogProbs, self).__init__()
     self.batch_size = batch_size
     self.seq_length = seq_length
     self.width = width
     self.compute_type = compute_type
     self.dtype = dtype
     self.log_softmax = nn.LogSoftmax(axis=-1)
     self.cast = P.Cast()
    def __init__(self,
                 batch_size,
                 seq_length,
                 width,
                 compute_type=mstype.float32,
                 dtype=mstype.float32):
        super(PredLogProbs, self).__init__()
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.width = width
        self.compute_type = compute_type
        self.dtype = dtype

        self.reshape = P.Reshape()
        self.matmul = P.MatMul(transpose_b=True)
        self.log_softmax = nn.LogSoftmax(axis=-1)
        self.shape_flat_sequence_tensor = (self.batch_size * self.seq_length,
                                           self.width)
        self.cast = P.Cast()
Example #9
0
    def __init__(self, weight=None, gamma=2.0, reduction='mean'):
        super(FocalLoss, self).__init__(reduction=reduction)

        self.gamma = validator.check_value_type("gamma", gamma, [float])
        if weight is not None and not isinstance(weight, Tensor):
            raise TypeError(
                "The type of weight should be Tensor, but got {}.".format(
                    type(weight)))
        if isinstance(weight, Tensor) and weight.ndim != 1:
            raise ValueError(
                "The dimension of weight should be 1, but got {}.".format(
                    weight.ndim))
        self.weight = weight
        self.expand_dims = P.ExpandDims()
        self.gather_d = P.GatherD()
        self.squeeze = P.Squeeze(axis=1)
        self.tile = P.Tile()
        self.cast = P.Cast()
        self.dtype = P.DType()
        self.logsoftmax = nn.LogSoftmax(1)
Example #10
0
 def __init__(self, vocab_size, embedding_dims, num_class):
     super(FastText, self).__init__()
     self.vocab_size = vocab_size
     self.embeding_dims = embedding_dims
     self.num_class = num_class
     self.embeding_func = nn.Embedding(vocab_size=self.vocab_size,
                                       embedding_size=self.embeding_dims,
                                       padding_idx=0,
                                       embedding_table='Zeros')
     self.fc = nn.Dense(self.embeding_dims,
                        out_channels=self.num_class,
                        weight_init=XavierUniform(1)).to_float(
                            mstype.float16)
     self.reducesum = P.ReduceSum()
     self.expand_dims = P.ExpandDims()
     self.squeeze = P.Squeeze(axis=1)
     self.cast = P.Cast()
     self.tile = P.Tile()
     self.realdiv = P.RealDiv()
     self.fill = P.Fill()
     self.log_softmax = nn.LogSoftmax(axis=1)
Example #11
0
    def construct(self, predict, target):
        targets = target
        _check_ndim(predict.ndim, targets.ndim)
        _check_channel_and_shape(targets.shape[1], predict.shape[1])
        _check_predict_channel(predict.shape[1])

        if predict.ndim > 2:
            predict = predict.view(predict.shape[0], predict.shape[1], -1)
            targets = targets.view(targets.shape[0], targets.shape[1], -1)
        else:
            predict = self.expand_dims(predict, 2)
            targets = self.expand_dims(targets, 2)

        log_probability = nn.LogSoftmax(1)(predict)

        if target.shape[1] == 1:
            log_probability = self.gather_d(
                log_probability, 1, self.cast(targets, mindspore.int32))
            log_probability = self.squeeze(log_probability)

        probability = F.exp(log_probability)

        if self.weight is not None:
            convert_weight = self.weight[None, :, None]
            convert_weight = self.tile(convert_weight,
                                       (targets.shape[0], 1, targets.shape[2]))
            if target.shape[1] == 1:
                convert_weight = self.gather_d(
                    convert_weight, 1, self.cast(targets, mindspore.int32))
                convert_weight = self.squeeze(convert_weight)
            probability = log_probability * convert_weight

        weight = F.pows(-probability + 1.0, self.gamma)
        if target.shape[1] == 1:
            loss = (-weight * log_probability).mean(axis=1)
        else:
            loss = (-weight * targets * log_probability).mean(axis=-1)

        return self.get_loss(loss)
Example #12
0
    def __init__(self, config, is_training=True, dropout=0.1):
        super(Decoder, self).__init__()

        self.vocab_size = config.ch_vocab_size
        self.hidden_size = config.hidden_size
        self.max_len = config.max_seq_length

        self.trans = P.Transpose()
        self.perm = (1, 0, 2)
        self.embedding = nn.Embedding(self.vocab_size, self.hidden_size)
        self.dropout = nn.Dropout(1 - dropout)
        self.attn = nn.Dense(self.hidden_size, self.max_len)
        self.softmax = nn.Softmax(axis=2)
        self.bmm = P.BatchMatMul()
        self.concat = P.Concat(axis=2)
        self.attn_combine = nn.Dense(self.hidden_size * 2, self.hidden_size)

        self.gru = GRU(config,
                       is_training=is_training).to_float(mstype.float16)
        self.out = nn.Dense(self.hidden_size, self.vocab_size)
        self.logsoftmax = nn.LogSoftmax(axis=2)
        self.cast = P.Cast()
Example #13
0
 def __init__(self, config):
     super(PredLogProbs, self).__init__()
     self.reshape = P.Reshape()
     self.log_softmax = nn.LogSoftmax(axis=-1)
     self.get_shape = P.Shape()
Example #14
0
 def __init__(self, network):
     super(FastTextInferCell, self).__init__(auto_prefix=False)
     self.network = network
     self.argmax = P.ArgMaxWithValue(axis=1, keep_dims=True)
     self.log_softmax = nn.LogSoftmax(axis=1)
Example #15
0
 def __init__(self, dim):
     super(LogSoftmaxNet, self).__init__()
     self.logsoftmax = nn.LogSoftmax(dim)