Example #1
0
 def __init__(self, strategy1, strategy2):
     super().__init__()
     self.matmul1 = P.MatMul().shard(strategy1)
     self.norm = P.FusedBatchNormEx()
     self.gamma = Parameter(Tensor(np.ones([64]), dtype=ms.float32),
                            name="gamma")
     self.beta = Parameter(Tensor(np.ones([64]), dtype=ms.float32),
                           name="beta")
     self.mean = Parameter(Tensor(np.ones([64]), dtype=ms.float32),
                           name="mean")
     self.var = Parameter(Tensor(np.ones([64]), dtype=ms.float32),
                          name="var")
     self.matmul2 = P.MatMul().shard(strategy2)
Example #2
0
 def __init__(self,
              num_features,
              gamma_init,
              beta_init,
              mean_init,
              var_init,
              use_batch_statistics=None):
     super(NetFusedBatchNormExDynamic, self).__init__()
     self.bn = P.FusedBatchNormEx(mode=1, epsilon=0.00001, momentum=0.1)
     self.moving_mean = Parameter(initializer(mean_init, num_features),
                                  name="mean",
                                  requires_grad=False)
     self.moving_variance = Parameter(initializer(var_init, num_features),
                                      name="variance",
                                      requires_grad=False)
     self.gamma = Parameter(initializer(gamma_init, num_features),
                            name="gamma",
                            requires_grad=True)
     self.beta = Parameter(initializer(beta_init, num_features),
                           name="beta",
                           requires_grad=True)
     self.dynshape = inner.GpuConvertToDynamicShape()
Example #3
0
    def __init__(self,
                 num_features,
                 eps=1e-5,
                 momentum=0.9,
                 affine=True,
                 gamma_init='ones',
                 beta_init='zeros',
                 moving_mean_init='zeros',
                 moving_var_init='ones',
                 use_batch_statistics=None,
                 device_num_each_group=1,
                 input_dims='2d',
                 data_format='NCHW'):
        super(_BatchNorm, self).__init__()
        if num_features < 1:
            raise ValueError("num_features must be at least 1")

        if momentum < 0 or momentum > 1:
            raise ValueError("momentum should be a number in range [0, 1], but got {}".format(momentum))
        self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.cls_name)
        if context.get_context("device_target") != "GPU" and self.format == "NHWC":
            raise ValueError("NHWC format only support in GPU target.")
        self.use_batch_statistics = use_batch_statistics
        self.num_features = num_features
        self.eps = eps
        self.input_dims = input_dims
        self.moving_mean = Parameter(initializer(
            moving_mean_init, num_features), name="mean", requires_grad=False)
        self.moving_variance = Parameter(initializer(
            moving_var_init, num_features), name="variance", requires_grad=False)
        self.gamma = Parameter(initializer(
            gamma_init, num_features), name="gamma", requires_grad=affine)
        self.beta = Parameter(initializer(
            beta_init, num_features), name="beta", requires_grad=affine)
        self.group = validator.check_positive_int(device_num_each_group)
        self.is_global = False
        if self.group != 1:
            self.rank_id = get_rank()
            self.rank_size = get_group_size()
            self.device_list = [i for i in range(0, self.rank_size)]
            self.rank_list = self.list_group(self.device_list, self.group)
            self.rank_list_idx = len(self.rank_list)
            for i in range(self.rank_list_idx):
                if self.rank_id in self.rank_list[i] and self.group != 1:
                    self.is_global = True
                    management.create_group('group' + str(i), self.rank_list[i])
                    self.all_reduce = P.AllReduce(P.ReduceOp.SUM, 'group' + str(i)).add_prim_attr('fusion', 1)
        self.shape = P.Shape()
        self.reduce_mean = P.ReduceMean(keep_dims=True)
        self.square = P.Square()
        self.sqrt = P.Sqrt()
        self.cast = P.Cast()
        self.dtype = P.DType()
        self.reshape = P.Reshape()
        self.is_ascend = context.get_context("device_target") == "Ascend"
        self.is_gpu = context.get_context("device_target") == "GPU"
        self.is_graph_mode = context.get_context("mode") == context.GRAPH_MODE
        self.momentum = 1.0 - momentum
        if context.get_context("enable_ge"):
            self.is_ge_backend = True
        else:
            self.is_ge_backend = False

        if self.is_graph_mode and (self.is_ge_backend or self.is_ascend):
            self.bn_train = P.BatchNorm(is_training=True,
                                        epsilon=self.eps)
        elif self.is_gpu:
            self.bn_train = P.FusedBatchNormEx(mode=1,
                                               epsilon=self.eps,
                                               momentum=self.momentum,
                                               data_format=self.format)
        else:
            self.bn_train = P.FusedBatchNorm(mode=1,
                                             epsilon=self.eps,
                                             momentum=self.momentum)
        self.bn_infer = P.BatchNorm(is_training=False, epsilon=self.eps, data_format=self.format)
        self.enable_global_sync = self.is_global and (self.is_ge_backend or (self.is_graph_mode and self.is_ascend))
        self.enable_default_train = self.is_graph_mode and not self.is_global and \
                                    (self.is_ge_backend or self.is_ascend)

        data_parallel_strategy = ((1,), (1,))
        data_parallel_strategy_one = ((1,), ())
        self.sub_mean = P.Sub().shard(data_parallel_strategy)
        self.sub_var = P.Sub().shard(data_parallel_strategy)
        self.mul_mean = P.Mul().shard(data_parallel_strategy_one)
        self.mul_var = P.Mul().shard(data_parallel_strategy_one)
        self.assign_sub_mean = P.AssignSub().shard(data_parallel_strategy)
        self.assign_sub_var = P.AssignSub().shard(data_parallel_strategy)