Example #1
0
    def fit(self, X, y, sample_weight=None):
        from sklearn.tree import DecisionTreeClassifier

        self.max_features = float(self.max_features)
        # Heuristic to set the tree depth
        if check_none(self.max_depth_factor):
            max_depth_factor = self.max_depth_factor = None
        else:
            num_features = X.shape[1]
            self.max_depth_factor = int(self.max_depth_factor)
            max_depth_factor = max(
                1,
                int(np.round(self.max_depth_factor * num_features, 0)))
        self.min_samples_split = int(self.min_samples_split)
        self.min_samples_leaf = int(self.min_samples_leaf)
        if check_none(self.max_leaf_nodes):
            self.max_leaf_nodes = None
        else:
            self.max_leaf_nodes = int(self.max_leaf_nodes)
        self.min_weight_fraction_leaf = float(self.min_weight_fraction_leaf)
        self.min_impurity_decrease = float(self.min_impurity_decrease)

        self.estimator = DecisionTreeClassifier(
            criterion=self.criterion,
            max_depth=max_depth_factor,
            min_samples_split=self.min_samples_split,
            min_samples_leaf=self.min_samples_leaf,
            max_leaf_nodes=self.max_leaf_nodes,
            min_weight_fraction_leaf=self.min_weight_fraction_leaf,
            min_impurity_decrease=self.min_impurity_decrease,
            class_weight=self.class_weight,
            random_state=self.random_state)
        self.estimator.fit(X, y, sample_weight=sample_weight)
        return self
    def iterative_fit(self, X, y, sample_weight=None, n_iter=1, refit=False):

        from sklearn.ensemble.gradient_boosting import GradientBoostingRegressor as GBR
        # Special fix for gradient boosting!
        if isinstance(X, np.ndarray):
            X = np.ascontiguousarray(X, dtype=X.dtype)
        if refit:
            self.estimator = None

        if self.estimator is None:
            self.learning_rate = float(self.learning_rate)
            self.n_estimators = int(self.n_estimators)
            self.subsample = float(self.subsample)
            self.min_samples_split = int(self.min_samples_split)
            self.min_samples_leaf = int(self.min_samples_leaf)
            self.min_weight_fraction_leaf = float(
                self.min_weight_fraction_leaf)
            if check_none(self.max_depth):
                self.max_depth = None
            else:
                self.max_depth = int(self.max_depth)
            self.max_features = float(self.max_features)
            if check_none(self.max_leaf_nodes):
                self.max_leaf_nodes = None
            else:
                self.max_leaf_nodes = int(self.max_leaf_nodes)
            self.min_impurity_decrease = float(self.min_impurity_decrease)
            self.verbose = int(self.verbose)

            self.estimator = GBR(
                loss=self.loss,
                learning_rate=self.learning_rate,
                n_estimators=n_iter,
                subsample=self.subsample,
                min_samples_split=self.min_samples_split,
                min_samples_leaf=self.min_samples_leaf,
                min_weight_fraction_leaf=self.min_weight_fraction_leaf,
                max_depth=self.max_depth,
                criterion=self.criterion,
                max_features=self.max_features,
                max_leaf_nodes=self.max_leaf_nodes,
                random_state=self.random_state,
                verbose=self.verbose,
                warm_start=True,
            )

        else:
            self.estimator.n_estimators += n_iter
            self.estimator.n_estimators = min(self.estimator.n_estimators,
                                              self.n_estimators)

        self.estimator.fit(X, y, sample_weight=sample_weight)

        # Apparently this if is necessary
        if self.estimator.n_estimators >= self.n_estimators:
            self.fully_fit_ = True

        return self
    def iterative_fit(self, X, y, sample_weight=None, n_iter=1, refit=False):
        from sklearn.ensemble import RandomForestClassifier

        if refit:
            self.estimator = None

        if self.estimator is None:
            self.n_estimators = int(self.n_estimators)
            if check_none(self.max_depth):
                self.max_depth = None
            else:
                self.max_depth = int(self.max_depth)

            self.min_samples_split = int(self.min_samples_split)
            self.min_samples_leaf = int(self.min_samples_leaf)
            self.min_weight_fraction_leaf = float(
                self.min_weight_fraction_leaf)

            if self.max_features not in ("sqrt", "log2", "auto"):
                max_features = int(X.shape[1]**float(self.max_features))
            else:
                max_features = self.max_features

            self.bootstrap = check_for_bool(self.bootstrap)

            if check_none(self.max_leaf_nodes):
                self.max_leaf_nodes = None
            else:
                self.max_leaf_nodes = int(self.max_leaf_nodes)

            self.min_impurity_decrease = float(self.min_impurity_decrease)

            # initial fit of only increment trees
            self.estimator = RandomForestClassifier(
                n_estimators=n_iter,
                criterion=self.criterion,
                max_features=max_features,
                max_depth=self.max_depth,
                min_samples_split=self.min_samples_split,
                min_samples_leaf=self.min_samples_leaf,
                min_weight_fraction_leaf=self.min_weight_fraction_leaf,
                bootstrap=self.bootstrap,
                max_leaf_nodes=self.max_leaf_nodes,
                min_impurity_decrease=self.min_impurity_decrease,
                random_state=self.random_state,
                n_jobs=self.n_jobs,
                class_weight=self.class_weight,
                warm_start=True)
        else:
            self.estimator.n_estimators += n_iter
            self.estimator.n_estimators = min(self.estimator.n_estimators,
                                              self.n_estimators)

        self.estimator.fit(X, y, sample_weight=sample_weight)
        return self
    def operate(self, input_datanode: DataNode, target_fields=None):
        from sklearn.ensemble import RandomTreesEmbedding

        X, y = input_datanode.data
        if target_fields is None:
            target_fields = collect_fields(input_datanode.feature_types,
                                           self.input_type)
        X_new = X[:, target_fields]
        if not self.model:
            self.n_estimators = int(self.n_estimators)
            if check_none(self.max_depth):
                self.max_depth = None
            else:
                self.max_depth = int(self.max_depth)

            # Skip heavy computation. max depth is set to 6.
            if X.shape[0] > 5000:
                self.max_depth = min(6, self.max_depth)

            self.min_samples_split = int(self.min_samples_split)
            self.min_samples_leaf = int(self.min_samples_leaf)
            if check_none(self.max_leaf_nodes):
                self.max_leaf_nodes = None
            else:
                self.max_leaf_nodes = int(self.max_leaf_nodes)
            self.min_weight_fraction_leaf = float(
                self.min_weight_fraction_leaf)
            self.bootstrap = check_for_bool(self.bootstrap)

            self.model = RandomTreesEmbedding(
                n_estimators=self.n_estimators,
                max_depth=self.max_depth,
                min_samples_split=self.min_samples_split,
                min_samples_leaf=self.min_samples_leaf,
                max_leaf_nodes=self.max_leaf_nodes,
                sparse_output=self.sparse_output,
                n_jobs=self.n_jobs,
                random_state=self.random_state)

            self.model.fit(X_new)

        _X = self.model.transform(X_new).toarray()

        return _X
Example #5
0
    def __init__(self,
                 criterion,
                 min_samples_leaf,
                 min_samples_split,
                 max_features,
                 bootstrap,
                 max_leaf_nodes,
                 max_depth,
                 min_weight_fraction_leaf,
                 min_impurity_decrease,
                 oob_score=False,
                 n_jobs=1,
                 random_state=None,
                 verbose=0,
                 class_weight=None):

        self.n_estimators = self.get_max_iter()
        if criterion not in ("gini", "entropy"):
            raise ValueError("'criterion' is not in ('gini', 'entropy'): "
                             "%s" % criterion)
        self.criterion = criterion

        if check_none(max_depth):
            self.max_depth = None
        else:
            self.max_depth = int(max_depth)
        if check_none(max_leaf_nodes):
            self.max_leaf_nodes = None
        else:
            self.max_leaf_nodes = int(max_leaf_nodes)

        self.min_samples_leaf = int(min_samples_leaf)
        self.min_samples_split = int(min_samples_split)
        self.max_features = float(max_features)
        self.bootstrap = check_for_bool(bootstrap)
        self.min_weight_fraction_leaf = float(min_weight_fraction_leaf)
        self.min_impurity_decrease = float(min_impurity_decrease)
        self.oob_score = oob_score
        self.n_jobs = int(n_jobs)
        self.random_state = random_state
        self.verbose = int(verbose)
        self.class_weight = class_weight
        self.estimator = None
Example #6
0
    def __init__(self,
                 criterion,
                 min_samples_leaf,
                 min_samples_split,
                 max_features,
                 bootstrap,
                 max_leaf_nodes,
                 max_depth,
                 min_weight_fraction_leaf,
                 min_impurity_decrease,
                 oob_score=False,
                 n_jobs=1,
                 random_state=None,
                 verbose=0):
        self.n_estimators = self.get_max_iter()
        self.criterion = criterion

        if check_none(max_depth):
            self.max_depth = None
        else:
            self.max_depth = int(max_depth)
        if check_none(max_leaf_nodes):
            self.max_leaf_nodes = None
        else:
            self.max_leaf_nodes = int(max_leaf_nodes)

        self.min_samples_leaf = int(min_samples_leaf)
        self.min_samples_split = int(min_samples_split)
        self.max_features = float(max_features)
        self.bootstrap = check_for_bool(bootstrap)
        self.min_weight_fraction_leaf = float(min_weight_fraction_leaf)
        self.min_impurity_decrease = float(min_impurity_decrease)
        self.oob_score = oob_score
        self.n_jobs = int(n_jobs)
        self.random_state = random_state
        self.verbose = int(verbose)
        self.estimator = None
Example #7
0
    def fit(self, X, Y):
        import sklearn.svm
        # Nested kernel
        if isinstance(self.kernel, tuple):
            nested_kernel = self.kernel
            self.kernel = nested_kernel[0]
            if self.kernel == 'poly':
                self.degree = nested_kernel[1]['degree']
                self.coef0 = nested_kernel[1]['coef0']
            elif self.kernel == 'sigmoid':
                self.coef0 = nested_kernel[1]['coef0']

        self.C = float(self.C)
        if self.degree is None:
            self.degree = 3
        else:
            self.degree = int(self.degree)
        if self.gamma is None:
            self.gamma = 0.0
        else:
            self.gamma = float(self.gamma)
        if self.coef0 is None:
            self.coef0 = 0.0
        else:
            self.coef0 = float(self.coef0)
        self.tol = float(self.tol)
        self.max_iter = float(self.max_iter)

        self.shrinking = check_for_bool(self.shrinking)

        if check_none(self.class_weight):
            self.class_weight = None

        self.estimator = sklearn.svm.SVC(C=self.C,
                                         kernel=self.kernel,
                                         degree=self.degree,
                                         gamma=self.gamma,
                                         coef0=self.coef0,
                                         shrinking=self.shrinking,
                                         tol=self.tol,
                                         class_weight=self.class_weight,
                                         max_iter=self.max_iter,
                                         random_state=self.random_state,
                                         decision_function_shape='ovr')
        self.estimator.fit(X, Y)
        return self
    def operate(self, input_datanode, target_fields=None):
        from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

        X, y = input_datanode.data

        if self.model is None:
            if check_none(self.shrinkage):
                self.shrinkage = None

            self.model = LinearDiscriminantAnalysis(
                n_components=self.n_components,
                shrinkage=self.shrinkage
            )
            self.model.fit(X, y)
        X_new = self.model.transform(X)

        return X_new
Example #9
0
    def operate(self, input_datanode, target_fields=None):
        X, y = input_datanode.data

        # Skip heavy computation in fast ica.
        if X.shape[0] > 10000 or X.shape[1] > 200:
            if not self.pre_trained:
                pass
                # self.skip_flag = True
        self.pre_trained = True
        if self.skip_flag:
            return X.copy()

        if self.model is None:
            from sklearn.decomposition import FastICA

            self.whiten = check_for_bool(self.whiten)
            if check_none(self.n_components):
                self.n_components = None
            else:
                self.n_components = int(self.n_components)

            if self.n_components is not None:
                self.n_components = min(self.n_components, X.shape[0])

            self.model = FastICA(n_components=self.n_components,
                                 algorithm=self.algorithm,
                                 fun=self.fun,
                                 whiten=self.whiten,
                                 random_state=self.random_state)
            # Make the RuntimeWarning an Exception!
            with warnings.catch_warnings():
                warnings.filterwarnings(
                    "error", message='array must not contain infs or NaNs')
                try:
                    self.model.fit(X)
                except ValueError as e:
                    if 'array must not contain infs or NaNs' in e.args[0]:
                        raise ValueError(
                            "Bug in scikit-learn: https://github.com/scikit-learn/scikit-learn/pull/2738"
                        )
                    raise e

        X_new = self.model.transform(X)
        return X_new
Example #10
0
    def fit(self, X, Y):
        import sklearn.svm
        import sklearn.multiclass

        # In case of nested penalty
        if isinstance(self.penalty, dict):
            combination = self.penalty
            self.penalty = combination['penalty']
            self.loss = combination['loss']
            self.dual = combination['dual']

        self.C = float(self.C)
        self.tol = float(self.tol)

        self.dual = check_for_bool(self.dual)

        self.fit_intercept = check_for_bool(self.fit_intercept)

        self.intercept_scaling = float(self.intercept_scaling)

        if check_none(self.class_weight):
            self.class_weight = None

        estimator = sklearn.svm.LinearSVC(
            penalty=self.penalty,
            loss=self.loss,
            dual=self.dual,
            tol=self.tol,
            C=self.C,
            class_weight=self.class_weight,
            fit_intercept=self.fit_intercept,
            intercept_scaling=self.intercept_scaling,
            multi_class=self.multi_class,
            random_state=self.random_state)

        if len(Y.shape) == 2 and Y.shape[1] > 1:
            self.estimator = sklearn.multiclass.OneVsRestClassifier(estimator,
                                                                    n_jobs=1)
        else:
            self.estimator = estimator

        self.estimator.fit(X, Y)
        return self
Example #11
0
    def fit(self, X, Y):
        import sklearn.multiclass
        from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

        # In case of nested shrinkage
        if isinstance(self.shrinkage, tuple):
            self.shrinkage_factor = self.shrinkage[1]['shrinkage_factor']
            self.shrinkage = self.shrinkage[0]

        if check_none(self.shrinkage):
            self.shrinkage_ = None
            solver = 'svd'
        elif self.shrinkage == "auto":
            self.shrinkage_ = 'auto'
            solver = 'lsqr'
        elif self.shrinkage == "manual":
            self.shrinkage_ = float(self.shrinkage_factor)
            solver = 'lsqr'
        else:
            raise ValueError(self.shrinkage)

        self.n_components = int(self.n_components)
        self.tol = float(self.tol)

        estimator = LinearDiscriminantAnalysis(n_components=self.n_components,
                                               shrinkage=self.shrinkage_,
                                               tol=self.tol,
                                               solver=solver)

        if len(Y.shape) == 2 and Y.shape[1] > 1:
            self.estimator = sklearn.multiclass.OneVsRestClassifier(estimator,
                                                                    n_jobs=1)
        else:
            self.estimator = estimator

        self.estimator.fit(X, Y)
        return self
    def operate(self, input_datanode, target_fields=None, sample_weight=None):
        from sklearn.feature_selection import SelectFromModel

        feature_types = input_datanode.feature_types
        X, y = input_datanode.data
        if target_fields is None:
            target_fields = collect_fields(feature_types, self.input_type)
        X_new = X[:, target_fields]

        n_fields = len(feature_types)
        irrevalent_fields = list(range(n_fields))
        for field_id in target_fields:
            irrevalent_fields.remove(field_id)

        if self.model is None:
            from sklearn.ensemble import ExtraTreesClassifier
            if check_none(self.max_leaf_nodes):
                self.max_leaf_nodes = None
            else:
                self.max_leaf_nodes = int(self.max_leaf_nodes)

            if check_none(self.max_depth):
                self.max_depth = None
            else:
                self.max_depth = int(self.max_depth)

            self.bootstrap = check_for_bool(self.bootstrap)
            self.n_jobs = int(self.n_jobs)
            self.min_impurity_decrease = float(self.min_impurity_decrease)
            self.max_features = self.max_features
            self.min_samples_leaf = int(self.min_samples_leaf)
            self.min_samples_split = int(self.min_samples_split)
            self.verbose = int(self.verbose)

            max_features = int(X_new.shape[1]**float(self.max_features))
            estimator = ExtraTreesClassifier(
                n_estimators=self.n_estimators,
                criterion=self.criterion,
                max_depth=self.max_depth,
                min_samples_split=self.min_samples_split,
                min_samples_leaf=self.min_samples_leaf,
                bootstrap=self.bootstrap,
                max_features=max_features,
                max_leaf_nodes=self.max_leaf_nodes,
                min_impurity_decrease=self.min_impurity_decrease,
                oob_score=self.oob_score,
                n_jobs=self.n_jobs,
                verbose=self.verbose,
                random_state=self.random_state,
                class_weight=self.class_weight)
            estimator.fit(X_new, y, sample_weight=sample_weight)
            self.model = SelectFromModel(estimator=estimator,
                                         threshold='mean',
                                         prefit=True)

        _X = self.model.transform(X_new)
        is_selected = self.model.get_support()

        irrevalent_types = [feature_types[idx] for idx in irrevalent_fields]
        selected_types = [
            feature_types[idx] for idx in target_fields if is_selected[idx]
        ]
        selected_types.extend(irrevalent_types)

        new_X = np.hstack((_X, X[:, irrevalent_fields]))
        new_feature_types = selected_types
        output_datanode = DataNode((new_X, y), new_feature_types,
                                   input_datanode.task_type)
        output_datanode.trans_hist = input_datanode.trans_hist.copy()
        output_datanode.trans_hist.append(self.type)
        output_datanode.enable_balance = input_datanode.enable_balance
        output_datanode.data_balance = input_datanode.data_balance
        self.target_fields = target_fields.copy()

        return output_datanode