def __do_transform(self, signal):
        signal = signal.astype(self.precision)
        if self.transform:
            signal = tensor_to_numpy(self.transform(signal.reshape(
                (1, -1, 1))))

        return signal
    def __do_transform(self, signal):
        signal = signal.astype(self.precision)
        if self.transform:
            signal = tensor_to_numpy(self.transform(signal.reshape(
                (1, -1, 1))))

            signal = np.repeat(signal, repeats=self.upsample_factor, axis=-1)

        return signal
Example #3
0
    def __getitem__(self, index):
        X, y, label_name = self.X[index], self.y[index], self.label_name[index]

        if self.transforms:
            X = tensor_to_numpy(self.transforms(X.reshape((1, -1, 1))))

        if self.one_hot_labels:
            y = self.one_hot_encoder(y)[0, :]

        return {"sound": X, "class": y, "class_label": label_name}
    def do_transform(self, sound):
        if self.transforms:
            trans_sig = self.transforms(sound.reshape((1, -1, 1)))
            sound = tensor_to_numpy(trans_sig)

        return sound