Example #1
0
 def _set_metabolite_concentrations(self):
     '''
     set the metabolite concentrations to values given in the sbtab
     (if specified)
     '''
     for s in self._model.getListOfSpecies():
         if misc.is_enzyme(s):  # enzymes are treated separately
             continue
         conc = float(self._get_sbtab_entry('met_conc', species=s))
         try:
             conc = float(self._get_sbtab_entry('met_conc', species=s))
             s.setInitialConcentration(conc)
         except:
             self._print_warning('''No initial concentration found for
             species %s. Setting value to 1.''' % s.getId())
             s.setInitialConcentration(1.)
Example #2
0
 def _set_metabolite_concentrations(self):
     '''
     set the metabolite concentrations to values given in the sbtab
     (if specified)
     '''
     for s in self._model.getListOfSpecies():
         if misc.is_enzyme(s):  # enzymes are treated separately
             continue
         conc = float(self._get_sbtab_entry('met_conc', species=s))
         try:
             conc = float(self._get_sbtab_entry('met_conc', species=s))
             s.setInitialConcentration(conc)
         except:
             self._print_warning('''No initial concentration found for
             species %s. Setting value to 1.''' % s.getId())
             s.setInitialConcentration(1.)
Example #3
0
    def _create_global_params(self, g_params, mode):
        '''
        create the global parameters
        @type  g_params:  list
        @param g_params:  list of global parameters,  as generated by
                          pack_parameters function
        @type  mode:      string
        @param mode:      parametrisation type ('cat' | 'weg' | 'hal')
        '''
        # Hack, add temperature and gas constant if parametrization is 'weg'
        if mode == 'weg':
            p = self._model.createParameter()
            p.setId('temp')
            p.setValue(300)
            p = self._model.createParameter()
            p.setId('R')
            p.setValue(8.31)

        # iterate over all global parameter types
        global_param_count = 0
        for p_type in self.mode2params[mode]:
            scope, deps, id_temp, required = self.param2options[p_type]
            if scope == 'local':
                continue
            p_value = g_params[global_param_count]
            global_param_count += 1
            # decide whether parameter depends on species / reaction and add it
            if deps == 's' or deps == 'k':
                i = 0
                for s in self._model.getListOfSpecies():
                    if misc.is_enzyme(s):
                        continue
                    self._add_param(p_type,
                                    p_value[i],
                                    reaction=None,
                                    species=s)
                    i += 1
            elif deps == 'r':
                for i, r in enumerate(self._model.getListOfReactions):
                    self._add_param(p_type,
                                    p_value[i],
                                    reaction=r,
                                    species=None)
Example #4
0
    def _create_global_params(self, g_params, mode):
        '''
        create the global parameters
        @type  g_params:  list
        @param g_params:  list of global parameters,  as generated by
                          pack_parameters function
        @type  mode:      string
        @param mode:      parametrisation type ('cat' | 'weg' | 'hal')
        '''
        # Hack, add temperature and gas constant if parametrization is 'weg'
        if mode == 'weg':
            p = self._model.createParameter()
            p.setId('temp')
            p.setValue(300)
            p = self._model.createParameter()
            p.setId('R')
            p.setValue(8.31)

        # iterate over all global parameter types
        global_param_count = 0
        for p_type in self.mode2params[mode]:
            scope, deps, id_temp, required = self.param2options[p_type]
            if scope == 'local':
                continue
            p_value = g_params[global_param_count]
            global_param_count += 1
            # decide whether parameter depends on species / reaction and add it
            if deps == 's' or deps == 'k':
                i = 0
                for s in self._model.getListOfSpecies():
                    if misc.is_enzyme(s):
                        continue
                    self._add_param(p_type, p_value[i], reaction=None,
                                    species=s)
                    i += 1
            elif deps == 'r':
                for i, r in enumerate(self._model.getListOfReactions):
                    self._add_param(p_type, p_value[i], reaction=r,
                                    species=None)
Example #5
0
    def _get_regulation(self, reaction):
        '''
        get regulational term for a reaction
        @type  reaction:  libsbml.reaction
        @param reaction:  reaction
        @rtype:           tuple
        @return:          (prefactor, denominator_term), where prefactor is a
                          list of prefactors to the kinetic law and denominator
                          term is a list of terms added to the denominator (one
                          list entry per modifier)
        '''
        prefacs = []
        denom_terms = []
        # generate one term for each modifier
        for m in reaction.getListOfModifiers():
            if misc.is_enzyme(self._model.getSpecies(m.getSpecies())):
                continue
            # get the ids for the possiby involved parameters
            ka = self.param2options['k_a_vec'][2].replace(
                '$REAC$', reaction.getId()).replace('$SPECIES$',
                                                    m.getSpecies())
            ki = self.param2options['k_i_vec'][2].replace(
                '$REAC$', reaction.getId()).replace('$SPECIES$',
                                                    m.getSpecies())
            act_ratio = self.param2options['act_ratio_vec'][2].replace(
                '$REAC$', reaction.getId()).replace('$SPECIES$',
                                                    m.getSpecies())
            inh_ratio = self.param2options['inh_ratio_vec'][2].replace(
                '$REAC$', reaction.getId()).replace('$SPECIES$',
                                                    m.getSpecies())
            act_term = '(%s/%s)' % (m.getSpecies(), ka)
            inh_term = '(%s/%s)' % (m.getSpecies(), ki)

            # decide for regulation type
            sbo = m.getSBOTerm()
            try:
                reg_type = self.sbo2type[sbo]
            except:
                if reaction.getKineticLaw().getParameter(ka):
                    reg_type = self._default_act
                elif reaction.getKineticLaw().getParameter(ki):
                    reg_type = self._default_inh
                else:
                    continue

            if 'act' in reg_type:
                if not reaction.getKineticLaw().getParameter(ka):
                    raise Exception('Parameter %s not given' % ka)
            if 'inh' in reg_type:
                if not reaction.getKineticLaw().getParameter(ki):
                    raise Exception('Parameter %s not given' % ki)
            if reg_type == 'partial_act' \
               and not reaction.getKineticLaw().getParameter(act_ratio):
                raise Exception('Parameter %s not given' % act_ratio)
            if reg_type == 'partial_inh' \
               and not reaction.getKineticLaw().getParameter(inh_ratio):
                raise Exception('Parameter %s not given' % inh_ratio)
            reaction.getKineticLaw().setSBOTerm(self.type2sbo[reg_type])

            # generate the actual terms
            if reg_type == 'partial_act':
                term = '(%s + (1 - %s) * ( (%s) / (1 + %s)))' % (
                    act_ratio, act_ratio, act_term, act_term)
            elif reg_type == 'partial_inh':
                term = '(%s + (1 - %s) * ( 1 / (1 + %s)))' % (
                    inh_ratio, inh_ratio, inh_term)
            elif reg_type == 'complete_act':
                term = '((%s)/(1 + %s))' % (act_term, act_term)
            elif reg_type == 'complete_inh':
                term = '(1/(1 + %s))' % (inh_term)
            elif reg_type == 'specific_act':
                t = '(%s/%s)' % (ka, m.getSpecies())
                denom_terms.append(t)
                continue
            elif reg_type == 'specific_inh':
                denom_terms.append(inh_term)
                continue
            else:
                raise Exception("Unknown regulation type: typo in code")
            prefacs.append(term)

        prefac = ' * '.join(prefacs)
        denom_term = ' + '.join(denom_terms)

        return (prefac, denom_term)
Example #6
0
    def _pack_parameters(self, mode):
        '''
        get the parameters from the sbtab and pack them in a way that they can
        be added easily. Parameters are separated in local ones (associated
        with a reaction) and global ones.
        @type  mode:  string
        @param mode:  parametrisation type ('cat' | 'weg' | 'hal')
        @rtype:       tuple
        @return:      tuple of (global_parameters, local_parameters) where
                      global parameters is the list of global params (1 entry
                      for each param type) and local_parameter is the list of
                      local params (1 entry for each reaction)
        '''
        # get the global params
        global_params = []
        # get global params for all parameters specified for this mode
        for p_type in self.mode2params[mode]:
            p_vec = []
            scope, deps, dummy, required = self.param2options[p_type]
            if scope == 'local':
                continue
            # if param. depends on species, get one param for each species, if
            # it depends on reaction get one for each reaction
            if deps == 's' or deps == 'k':
                for s in self._model.getListOfSpecies():
                    if misc.is_enzyme(s):
                        continue
                    p_value = self._get_sbtab_entry(p_type, species=s)
                    p_vec.append(p_value)
            elif deps == 'r':
                for r in self._model.getListOfReactions():
                    p_value = self._get_sbtab_entry(p_type, reaction=r)
                    p_vec.append(p_value)
            global_params.append(p_vec)

        # get local parameters (one set for each reaction)
        local_params = []
        for r in self._model.getListOfReactions():
            reaction_params = []
            for p_type in self.mode2params[mode]:
                scope, deps, dummy, required = self.param2options[p_type]
                if scope == 'global':
                    continue
                if deps == '':
                    p_vec = self._get_sbtab_entry(p_type, reaction=r)
                elif deps == 's':
                    p_vec = []
                    for s in misc.get_participants(r):
                        p_value = self._get_sbtab_entry(
                            p_type,
                            reaction=r,
                            species=self._model.getSpecies(s.getSpecies()))
                        p_vec.append(p_value)
                elif deps == 'k':
                    p_vec = []
                    for s in misc.get_modifiers(r):

                        p_value = self._get_sbtab_entry(
                            p_type,
                            reaction=r,
                            species=self._model.getSpecies(s.getSpecies()))
                        p_vec.append(p_value)
                elif deps == 'm':
                    p_vec = []
                    for m in r.getListOfModifiers():
                        p_value = self._get_sbtab_entry(
                            p_type,
                            reaction=r,
                            species=self._model.getSpecies(m.getSpecies()))
                        p_vec.append(p_value)
                reaction_params.append(p_vec)
            local_params.append(reaction_params)

        return (global_params, local_params)
Example #7
0
    def _get_regulation(self, reaction):
        '''
        get regulational term for a reaction
        @type  reaction:  libsbml.reaction
        @param reaction:  reaction
        @rtype:           tuple
        @return:          (prefactor, denominator_term), where prefactor is a
                          list of prefactors to the kinetic law and denominator
                          term is a list of terms added to the denominator (one
                          list entry per modifier)
        '''
        prefacs = []
        denom_terms = []
        # generate one term for each modifier
        for m in reaction.getListOfModifiers():
            if misc.is_enzyme(self._model.getSpecies(m.getSpecies())):
                continue
            # get the ids for the possiby involved parameters
            ka = self.param2options['k_a_vec'][2].replace('$REAC$',
                                                          reaction.getId()).replace('$SPECIES$',
                                                                                    m.getSpecies())
            ki = self.param2options['k_i_vec'][2].replace('$REAC$',
                                                          reaction.getId()).replace('$SPECIES$',
                                                                                    m.getSpecies())
            act_ratio = self.param2options['act_ratio_vec'][2].replace('$REAC$',
                                                                       reaction.getId()).replace('$SPECIES$',
                                                                                                 m.getSpecies())
            inh_ratio = self.param2options['inh_ratio_vec'][2].replace('$REAC$',
                                                                       reaction.getId()).replace('$SPECIES$',
                                                                                                 m.getSpecies())
            act_term = '(%s/%s)' % (m.getSpecies(), ka)
            inh_term = '(%s/%s)' % (m.getSpecies(), ki)

            # decide for regulation type
            sbo = m.getSBOTerm()
            try:
                reg_type = self.sbo2type[sbo]
            except:
                if reaction.getKineticLaw().getParameter(ka):
                    reg_type = self._default_act
                elif reaction.getKineticLaw().getParameter(ki):
                    reg_type = self._default_inh
                else:
                    continue

            if 'act' in reg_type:
                if not reaction.getKineticLaw().getParameter(ka):
                    raise Exception('Parameter %s not given' % ka)
            if 'inh' in reg_type:
                if not reaction.getKineticLaw().getParameter(ki):
                    raise Exception('Parameter %s not given' % ki)
            if reg_type == 'partial_act' \
               and not reaction.getKineticLaw().getParameter(act_ratio):
                    raise Exception('Parameter %s not given' % act_ratio)
            if reg_type == 'partial_inh' \
               and not reaction.getKineticLaw().getParameter(inh_ratio):
                    raise Exception('Parameter %s not given' % inh_ratio)
            reaction.getKineticLaw().setSBOTerm(self.type2sbo[reg_type])

            # generate the actual terms
            if reg_type == 'partial_act':
                term = '(%s + (1 - %s) * ( (%s) / (1 + %s)))' % (act_ratio,
                                                                 act_ratio,
                                                                 act_term,
                                                                 act_term)
            elif reg_type == 'partial_inh':
                term = '(%s + (1 - %s) * ( 1 / (1 + %s)))' % (inh_ratio,
                                                              inh_ratio,
                                                              inh_term)
            elif reg_type == 'complete_act':
                term = '((%s)/(1 + %s))' % (act_term, act_term)
            elif reg_type == 'complete_inh':
                term = '(1/(1 + %s))' % (inh_term)
            elif reg_type == 'specific_act':
                t = '(%s/%s)' % (ka, m.getSpecies())
                denom_terms.append(t)
                continue
            elif reg_type == 'specific_inh':
                denom_terms.append(inh_term)
                continue
            else:
                raise Exception("Unknown regulation type: typo in code")
            prefacs.append(term)

        prefac = ' * '.join(prefacs)
        denom_term = ' + '.join(denom_terms)

        return (prefac, denom_term)
Example #8
0
    def _pack_parameters(self, mode):
        '''
        get the parameters from the sbtab and pack them in a way that they can
        be added easily. Parameters are separated in local ones (associated
        with a reaction) and global ones.
        @type  mode:  string
        @param mode:  parametrisation type ('cat' | 'weg' | 'hal')
        @rtype:       tuple
        @return:      tuple of (global_parameters, local_parameters) where
                      global parameters is the list of global params (1 entry
                      for each param type) and local_parameter is the list of
                      local params (1 entry for each reaction)
        '''
        # get the global params
        global_params = []
        # get global params for all parameters specified for this mode
        for p_type in self.mode2params[mode]:
            p_vec = []
            scope, deps, dummy, required = self.param2options[p_type]
            if scope == 'local':
                continue
            # if param. depends on species, get one param for each species, if
            # it depends on reaction get one for each reaction
            if deps == 's' or deps == 'k':
                for s in self._model.getListOfSpecies():
                    if misc.is_enzyme(s):
                        continue
                    p_value = self._get_sbtab_entry(p_type, species=s)
                    p_vec.append(p_value)
            elif deps == 'r':
                for r in self._model.getListOfReactions():
                    p_value = self._get_sbtab_entry(p_type, reaction=r)
                    p_vec.append(p_value)
            global_params.append(p_vec)

        # get local parameters (one set for each reaction)
        local_params = []
        for r in self._model.getListOfReactions():
            reaction_params = []
            for p_type in self.mode2params[mode]:
                scope, deps, dummy, required = self.param2options[p_type]
                if scope == 'global':
                    continue
                if deps == '':
                    p_vec = self._get_sbtab_entry(p_type, reaction=r)
                elif deps == 's':
                    p_vec = []
                    for s in misc.get_participants(r):
                        p_value = self._get_sbtab_entry(p_type, reaction=r,
                                                        species=self._model.getSpecies(s.getSpecies()))
                        p_vec.append(p_value)
                elif deps == 'k':
                    p_vec = []
                    for s in misc.get_modifiers(r):
                        p_value = self._get_sbtab_entry(p_type, reaction=r,
                                                        species=self._model.getSpecies(s.getSpecies()))
                        p_vec.append(p_value)
                elif deps == 'm':
                    p_vec = []
                    for m in r.getListOfModifiers():
                        p_value = self._get_sbtab_entry(p_type, reaction=r,
                                                        species=self._model.getSpecies(m.getSpecies()))
                        p_vec.append(p_value)
                reaction_params.append(p_vec)
            local_params.append(reaction_params)
        return (global_params, local_params)