Example #1
0
    def write_results(self, out_dir, bname):
        for names_tup, (Imin, Imax) in sorted(
                self.Imin_max_pairs_given_names.items()):
            Imin_name, Imax_name = names_tup
            Imin = misc.list_if_scalar(Imin, len(self.concentrations))
            Imax = misc.list_if_scalar(Imax, len(self.concentrations))

            out_fname = '{}_{}_{}_Kds_and_ABAs.txt'.format(
                bname, Imin_name.replace(' ', '_'),
                Imax_name.replace(' ', '_'))
            out_fpath = os.path.join(out_dir, out_fname)
            with open(out_fpath, 'w') as out:
                out.write('# Target: {}\n'.format(self.target))
                out.write('# Neg Control: {}\n'.format(
                    self.neg_control_target))
                out.write('# Concentration\tImin\tImax\n')
                for conc, imin, imax in zip(self.concentrations, Imin, Imax):
                    out.write(
                        '\t'.join(map(str, map(float, (conc, imin, imax)))) +
                        '\n')
                out.write('\t'.join([
                    '# Seq', 'Kd (pM)', 'Kd error', 'ABA (kB T)', 'ABA error'
                ]) + '\n')
                out_zipper = zip(self.IA.seqs, self.Kds[names_tup],
                                 self.Kd_errors[names_tup],
                                 self.ABAs[names_tup],
                                 self.ABA_errors[names_tup])
                out.write('\n'.join(
                    '\t'.join(map(str, [seq, Kd, Kd_err, ABA, ABA_err]))
                    for seq, Kd, Kd_err, ABA, ABA_err in out_zipper))
Example #2
0
    def plot_normalized_intensities(self,
                                    ax,
                                    seq,
                                    Imin,
                                    Imax,
                                    max_clust=2000,
                                    xvals=None):
        if xvals is None:
            xvals = self.course_trait_list

        Imin = misc.list_if_scalar(Imin, self.course_len)
        Imax = misc.list_if_scalar(Imax, self.course_len)

        inten_lol = self.intensity_lol_given_seq[seq]
        nclust = min(max_clust, len(inten_lol[0]))
        alpha = self._path_alpha(nclust)
        for i in range(nclust):
            path = [(inten_list[i] - imn) /
                    (imx - imn) if inten_list[i] is not None else None
                    for inten_list, imn, imx in zip(inten_lol, Imin, Imax)]
            ax.plot(xvals, path, 'b', alpha=alpha)
Example #3
0
    def all_normalized_trait_and_inten_vals_given_seq(self,
                                                      seq,
                                                      Imin,
                                                      Imax,
                                                      max_clust=None,
                                                      bootstrap=False):
        """
        Returns all concentration/intensities pairs in read_names, return as two lists, with the
        intensities adjusted by Imin and Imax to run typically between 0 and 1.

        Returns:
            :list: all_concentrations
            :list: all_intensities
        """
        Imin = misc.list_if_scalar(Imin, self.course_len)
        Imax = misc.list_if_scalar(Imax, self.course_len)
        assert len(Imin) == len(Imax) == len(self.course_trait_list), (Imin,
                                                                       Imax)
        all_trait_vals, all_intensities = [], []
        for tval, imn, imx, inten_arr, inten_list in zip(
                self.course_trait_list, Imin, Imax,
                self.intensity_loarr_given_seq[seq],
                self.intensity_lol_given_seq[seq]):
            if len(inten_arr) == 0:
                tmp_inten = np.array([])
            elif bootstrap:
                tmp_idx = np.random.choice(np.arange(len(inten_list)),
                                           size=min(max_clust,
                                                    len(inten_list)),
                                           replace=True)
                tmp_inten = np.array([
                    inten_list[idx] for idx in tmp_idx
                    if inten_list[idx] != None
                ])
            else:
                tmp_inten = np.array(list(inten_arr[:max_clust]))
            tmp_inten = list((tmp_inten - imn) / (imx - imn))
            all_trait_vals.extend([tval] * len(tmp_inten))
            all_intensities.extend(tmp_inten)
        return all_trait_vals, all_intensities
Example #4
0
    def plot_raw_fit(self, ax, seq, Kd, Imin, Imax):
        self.IA.plot_raw_intensities(ax, seq, xvals=self.nM_concentrations)
        Imin = misc.list_if_scalar(Imin, self.IA.course_len)
        Imax = misc.list_if_scalar(Imax, self.IA.course_len)
        nM_Kd = Kd / 1000.0

        ax.plot(self.nM_concentrations,
                Imin,
                'ko',
                alpha=0.8,
                label='$I_{min}$')
        ax.plot(self.nM_concentrations,
                Imax,
                's',
                color='darkgoldenrod',
                alpha=0.8,
                label='$I_{max}$')

        def Iobs(x, Kd, Imin, Imax):
            return (Imax - Imin) / (1.0 + (float(Kd) / x)) + Imin

        fit_path = [
            Iobs(conc, nM_Kd, imn, imx)
            for conc, imn, imx in zip(self.nM_concentrations, Imin, Imax)
        ]
        ax.plot(self.nM_concentrations, fit_path, 'k--')

        x = np.logspace(np.log10(self.nM_concentrations[0]),
                        np.log10(self.nM_concentrations[-1]), 200)
        y = [Iobs(xx, nM_Kd, self.Imin_const, self.Imax_const) for xx in x]
        ax.plot(x, y, 'r')
        ax.set_xscale('log')

        ax.set_xlabel('Concentration (nM)', fontsize=18)
        ax.set_axis_bgcolor('white')
        ax.grid(False)
        ax.set_ylabel('Intensity', fontsize=18)
Example #5
0
    def ML_fit_Kd(self,
                  seq,
                  Imin_name,
                  max_clust=None,
                  bootstrap=False,
                  *args,
                  **kw_args):
        if max_clust is None:
            max_clust = self.max_clust
        if bootstrap:
            len_inten_list = len(self.IA.intensity_lol_given_seq[seq][0])
            bootstrap_idxs = np.random.choice(np.arange(len_inten_list),
                                              size=min(len_inten_list,
                                                       max_clust),
                                              replace=True)
        else:
            bootstrap_idxs = None

        Imin = getattr(self, Imin_name)
        Imin_list = misc.list_if_scalar(Imin, len(self.concentrations))

        def neg_log_L(Kd):
            return -self.model_logL([seq], [Kd],
                                    Imin_list,
                                    self.Imax_ML[Imin_name],
                                    self.sigma_consts[Imin_name],
                                    self.sigma_I[Imin_name],
                                    bootstrap_idxs=bootstrap_idxs)

        res = minimize(neg_log_L,
                       x0=20,
                       method='powell',
                       options=dict(maxiter=1000000, maxfev=1000000))
        if not res.success:
            print '\nWarning: Failure on {} ({})'.format(
                seq, seqtools.mm_names(self.target, seq))
        return float(res.x)
Example #6
0
    def fit_Imax_ML_given_Imin(self, ML_seqs, Imin):
        idx1 = len(ML_seqs)
        idx2 = idx1 + self.IA.course_len
        idx3 = idx2 + self.IA.course_len
        Imin_list = misc.list_if_scalar(Imin, len(self.concentrations))

        def neg_log_L(params):
            params = map(abs, params)
            Kds = params[:idx1]
            Imax_list = params[idx1:idx2]
            sig_cs = params[idx2:idx3]
            sigI = params[idx3]
            return -self.model_logL(ML_seqs, Kds, Imin_list, Imax_list, sig_cs,
                                    sigI)

        x0 = list([
            self.curve_fit_Kd(seq, self.Imin_const, self.Imax_const)
            for seq in ML_seqs
        ] + self.Imax_adjusted + [1] * self.IA.course_len +
                  [(self.Imax_const - self.Imin_const) / 10])

        assert len(x0) == idx3 + 1
        res = minimize(neg_log_L,
                       x0=x0,
                       method='powell',
                       options=dict(maxiter=1000000, maxfev=1000000,
                                    disp=True))
        if not res.success:
            print '\nWarning: Failure on {} ({})'.format(
                seq, seqtools.mm_names(self.target, seq))
        params = map(abs, res.x)
        Kds = params[:idx1]
        Imax_list = params[idx1:idx2]
        sig_cs = params[idx2:idx3]
        sigI = params[idx3]
        return Kds, Imax_list, sig_cs, sigI