def train(exp_dict): history = ms.load_history(exp_dict) if 'only_supervised' in exp_dict: tgt_trainloader_supervised, tgt_testloader_supervised = ms.get_tgt_loader_supervised( exp_dict) # load models tgt_model, tgt_opt, tgt_scheduler, _, _, _ = ms.load_model_tgt( exp_dict) fit_source_supervised(tgt_model, tgt_opt, tgt_scheduler, tgt_trainloader_supervised, exp_dict) tgt_acc = test.validate(tgt_model, tgt_model, tgt_trainloader_supervised, tgt_testloader_supervised) print("{} TEST Accuracy Supervised =========== {:2%}\n".format( exp_dict["tgt_dataset"], tgt_acc)) ms.save_model_tgt(exp_dict, history, tgt_model, tgt_opt) else: # Source src_trainloader, src_valloader = ms.load_src_loaders(exp_dict) ####################### 1. Train source model src_model, src_opt, src_scheduler = ms.load_model_src(exp_dict) # Train Source if exp_dict["reset_src"]: history = fit_source(src_model, src_opt, src_scheduler, src_trainloader, history, exp_dict) # Test Source src_acc = test.validate(src_model, src_model, src_trainloader, src_valloader) print("{} TEST Accuracy = {:2%}\n".format(exp_dict["src_dataset"], src_acc)) history["src_acc"] = src_acc ms.save_model_src(exp_dict, history, src_model, src_opt) ####################### 2. Train target model tgt_trainloader, tgt_valloader = ms.load_tgt_loaders(exp_dict) #load models tgt_model, tgt_opt, tgt_scheduler, disc_model, disc_opt, disc_scheduler = ms.load_model_tgt( exp_dict) tgt_model.load_state_dict(src_model.state_dict()) if exp_dict["reset_tgt"]: history = fit_target(src_model, tgt_model, tgt_opt, tgt_scheduler, disc_model, disc_opt, disc_scheduler, src_trainloader, tgt_trainloader, tgt_valloader, history, exp_dict)
def test_latest_model_bing(exp_dict, verbose=1): history = load_history(exp_dict) if ('only_supervised' in exp_dict) or ('tgt_supervised' in exp_dict): tgt_trainloader_supervised, tgt_testloader_supervised = ms.get_tgt_loader_supervised( exp_dict) # load models tgt_model, tgt_opt, tgt_scheduler, _, _, _ = ms.load_model_tgt( exp_dict) matrixErr, oa, aa, kappa = test.validate_bing( tgt_model, tgt_model, tgt_trainloader_supervised, tgt_testloader_supervised) else: src_trainloader, _ = ms.load_src_loaders(exp_dict) _, tgt_valloader = ms.load_tgt_loaders(exp_dict) src_model, src_opt, _ = ms.load_model_src(exp_dict) tgt_model, tgt_opt, _, _, _, _ = ms.load_model_tgt(exp_dict) matrixErr, oa, aa, kappa = test.validate_bing(src_model, tgt_model, src_trainloader, tgt_valloader) if verbose: print("=====================" "\nOvearll Accuracy of model at epoch {}: {}\n" "=====================".format(history["tgt_train"][-1]["epoch"], oa)) print("=====================" "\nAverage Accuracy of model at epoch {}: {}\n" "=====================".format(history["tgt_train"][-1]["epoch"], aa)) print("=====================" "\nKappa of model at epoch {}: {}\n" "=====================".format(history["tgt_train"][-1]["epoch"], kappa)) results = {} results['confusion_matrix'] = matrixErr results['OA'] = oa results['AA'] = aa results['Kappa'] = kappa return results
def test_latest_model(exp_dict, verbose=1): history = load_history(exp_dict) src_trainloader, _ = ms.load_src_loaders(exp_dict) _, tgt_valloader = ms.load_tgt_loaders(exp_dict) src_model, src_opt = ms.load_model_src(exp_dict) tgt_model, tgt_opt, _, _ = ms.load_model_tgt(exp_dict) acc_tgt = test.validate(src_model, tgt_model, src_trainloader, tgt_valloader) if verbose: print("=====================" "\nAcc of model at epoch {}: {}\n" "=====================".format(history["tgt_train"][-1]["epoch"], acc_tgt)) return acc_tgt
def train(exp_dict): history = ms.load_history(exp_dict) # Source src_trainloader, src_valloader = ms.load_src_loaders(exp_dict) ####################### 1. Train source model src_model, src_opt = ms.load_model_src(exp_dict) # Train Source history = fit_source(src_model, src_opt, src_trainloader, history, exp_dict) # Test Source src_acc = test.validate(src_model, src_model, src_trainloader, src_valloader) print("{} TEST Accuracy = {:2%}\n".format(exp_dict["src_dataset"], src_acc)) history["src_acc"] = src_acc ms.save_model_src(exp_dict, history, src_model, src_opt) ####################### 2. Train target model tgt_trainloader, tgt_valloader = ms.load_tgt_loaders(exp_dict) # load models tgt_model, tgt_opt, disc_model, disc_opt = ms.load_model_tgt(exp_dict) tgt_model.load_state_dict(src_model.state_dict()) history = fit_target(src_model, tgt_model, tgt_opt, disc_model, disc_opt, src_trainloader, tgt_trainloader, tgt_valloader, history, exp_dict) ms.save_model_tgt(exp_dict, history, tgt_model, tgt_opt, disc_model, disc_opt) exp_dict["reset_src"] = 0 exp_dict["reset_tgt"] = 0 ms.test_latest_model(exp_dict)
def train(exp_dict): history = ms.load_history(exp_dict) #Simone: data_transform = transforms.Compose([ transforms.Resize((exp_dict['image_size'], exp_dict['image_size']), interpolation=1), transforms.ToTensor() ]) # CUDA for PyTorch use_cuda = torch.cuda.is_available() device = torch.device("cuda:0" if use_cuda else "cpu") history = ms.load_history(exp_dict) src_trainloader = get_coxs2v_trainset( exp_dict["still_dir"], exp_dict["video1_dir"], exp_dict["video1_pairs"], train_folds, exp_dict["cross_validation_num_fold"], data_transform, people_per_batch, images_per_person, video_only=True, samples_division_list=[0.6, 0.4], # [0.6, 0.4] div_idx=0) src_valloader = get_coxs2v_trainset( exp_dict["still_dir"], exp_dict["video1_dir"], exp_dict["video1_pairs"], train_folds, exp_dict["cross_validation_num_fold"], data_transform, people_per_batch, images_per_person, video_only=True, samples_division_list=[0.6, 0.4], # [0.6, 0.4] div_idx=1) # Source #src_trainloader, src_valloader = ms.load_src_loaders(exp_dict) ####################### 1. Train source model src_model, src_opt = ms.load_model_src(exp_dict) # Train Source history = fit_source(src_model, src_opt, src_trainloader, history, exp_dict) # Test Source src_acc = test.validate(src_model, src_model, src_trainloader, src_valloader) print("{} TEST Accuracy = {:2%}\n".format(exp_dict["src_dataset"], src_acc)) history["src_acc"] = src_acc ms.save_model_src(exp_dict, history, src_model, src_opt) ####################### 2. Train target model #tgt_trainloader, tgt_valloader = ms.load_tgt_loaders(exp_dict) tgt_trainloader = get_coxs2v_trainset( exp_dict["still_dir"], exp_dict["video2_dir"], exp_dict["video2_pairs"], train_folds, exp_dict["cross_validation_num_fold"], data_transform, people_per_batch, images_per_person, video_only=True, samples_division_list=[0.6, 0.4], # [0.6, 0.4] div_idx=0) tgt_valloader = get_coxs2v_trainset( exp_dict["still_dir"], exp_dict["video2_dir"], exp_dict["video2_pairs"], train_folds, exp_dict["cross_validation_num_fold"], data_transform, people_per_batch, images_per_person, video_only=True, samples_division_list=[0.6, 0.4], # [0.6, 0.4] div_idx=1) # load models tgt_model, tgt_opt, disc_model, disc_opt = ms.load_model_tgt(exp_dict) tgt_model.load_state_dict(src_model.state_dict()) history = fit_target(src_model, tgt_model, tgt_opt, disc_model, disc_opt, src_trainloader, tgt_trainloader, tgt_valloader, history, exp_dict) ms.save_model_tgt(exp_dict, history, tgt_model, tgt_opt, disc_model, disc_opt) exp_dict["reset_src"] = 0 exp_dict["reset_tgt"] = 0 ms.test_latest_model(exp_dict)
def train(exp_dict): history = ms.load_history(exp_dict) # Source src_trainloader, src_valloader = ms.load_src_loaders(exp_dict) ##################### ## Train source model ##################### src_model, src_opt = ms.load_model_src(exp_dict) # Train Source for e in range(history["src_train"][-1]["epoch"], exp_dict["src_epochs"]): train_dict = ts.fit_src(src_model, src_trainloader, src_opt) loss = train_dict["loss"] print("Source ({}) - Epoch [{}/{}] - loss={:.2f}".format( type(src_trainloader).__name__, e, exp_dict["src_epochs"], loss)) history["src_train"] += [{"loss": loss, "epoch": e}] if e % 50 == 0: ms.save_model_src(exp_dict, history, src_model, src_opt) # Test Source src_acc = test.validate(src_model, src_model, src_trainloader, src_valloader) print("{} TEST Accuracy = {:2%}\n".format(exp_dict["src_dataset"], src_acc)) history["src_acc"] = src_acc ms.save_model_src(exp_dict, history, src_model, src_opt) ##################### ## Train Target model ##################### tgt_trainloader, tgt_valloader = ms.load_tgt_loaders(exp_dict) # load models tgt_model, tgt_opt, disc_model, disc_opt = ms.load_model_tgt(exp_dict) tgt_model.load_state_dict(src_model.state_dict()) for e in range(history["tgt_train"][-1]["epoch"], exp_dict["tgt_epochs"] + 1): # 1. Train disc if exp_dict["options"]["disc"] == True: tg.fit_disc(src_model, tgt_model, disc_model, src_trainloader, tgt_trainloader, opt_tgt=tgt_opt, opt_disc=disc_opt, epochs=3, verbose=0) acc_tgt = test.validate(src_model, tgt_model, src_trainloader, tgt_valloader) history["tgt_train"] += [{ "epoch": e, "acc_src": src_acc, "acc_tgt": acc_tgt, "n_train - " + exp_dict["src_dataset"]: len(src_trainloader.dataset), "n_train - " + exp_dict["tgt_dataset"]: len(tgt_trainloader.dataset), "n_test - " + exp_dict["tgt_dataset"]: len(tgt_valloader.dataset) }] print("\n>>> Methods: {} - Source: {} -> Target: {}".format( None, exp_dict["src_dataset"], exp_dict["tgt_dataset"])) print(pd.DataFrame([history["tgt_train"][-1]])) if (e % 5) == 0: ms.save_model_tgt(exp_dict, history, tgt_model, tgt_opt, disc_model, disc_opt) #ms.test_latest_model(exp_dict) # 2. Train center-magnet if exp_dict["options"]["center"] == True: tg.fit_center(src_model, tgt_model, src_trainloader, tgt_trainloader, tgt_opt, epochs=1) ms.save_model_tgt(exp_dict, history, tgt_model, tgt_opt, disc_model, disc_opt) exp_dict["reset_src"] = 0 exp_dict["reset_tgt"] = 0 ms.test_latest_model(exp_dict)