Example #1
0
def seg_predict_image_task1(image_path, use_tta=False):
    '''只针对一张图片'''
    num_folds = 4
    # use_tta = False  # 如果为false,表示不采用取平均数方式
    y_pred = np.zeros(shape=(1, 224, 224))
    resize_image_np, W, H = get_resize_image_np(image_path, 224)
    if use_tta:
        # 采用取平均数的模式
        for k_fold in range(num_folds + 1):
            model_name = 'task1_vgg16'
            run_name = 'task1_vgg16_k%d_v0' % k_fold
            model = backbone('vgg16').segmentation_model(load_from=run_name)
            # model.load_weights("/home/zhangfan/workData/LinuxCode/pythonProject/ISIC2018/model_data/task1_vgg16_k0_v0/task1_vgg16_k0_v0.hdf5")
            y_pred += inv_sigmoid(
                model.predict_on_batch(resize_image_np))[:, :, :, 0]
        y_pred /= (num_folds + 1)
    else:
        # 只是用最后一组数据的权重
        run_name = 'task1_vgg16_k%d_v0' % num_folds
        model = backbone('vgg16').segmentation_model(load_from=run_name)
        y_pred += inv_sigmoid(model.predict_on_batch(resize_image_np))[:, :, :,
                                                                       0]
    y_pred = sigmoid(y_pred)
    current_pred = y_pred[0] * 255
    current_pred[current_pred > 128] = 255
    current_pred[current_pred <= 128] = 0
    # 将resized_pred传给Nodejs
    print({"image_np": current_pred, "width": W, "height": H})
Example #2
0
 def cls_predict_images_task4(self,image_paths):
     results = []
     resize_images_np, images_size = get_resize_images_np(image_paths)
     images_num = len(images_size)
     y_pred = np.zeros(shape=(images_num, 2))
     with self.graph.as_default():
         y_pred += self.task4_model.predict_on_batch(resize_images_np)
     y_prob = sigmoid(y_pred)
     for index, image_path in enumerate(image_paths):
         task4_result = predict_thrift.task4_result()
         task4_result.name = image_path
         task4_result.result = y_prob[index]
         results.append(task4_result)
     return results
Example #3
0
def seg_predict_images_task1(image_paths, use_tta=False):
    '''输入图片地址,预测一组图片'''
    num_folds = 4
    use_tta = False
    image_num = len(image_paths)  # 得到图片的数量
    if use_tta:
        pass
    else:
        y_pred = np.zeros(shape=(1, 224, 224))
        run_name = 'task1_vgg16_k%d_v0' % num_folds
        model = backbone('vgg16').segmentation_model(load_from=run_name)
        for image_path in image_paths:
            resize_image_np, W, H = get_resize_image_np(image_path, 224)
            y_pred += inv_sigmoid(
                model.predict_on_batch(resize_image_np))[:, :, :, 0]
            y_pred = sigmoid(y_pred)
            current_pred = y_pred[0] * 255
            current_pred[current_pred > 128] = 255
            current_pred[current_pred <= 128] = 0
            print({"image_np": current_pred, "width": W, "height": H})
Example #4
0
 def seg_predict_images_task1(self,image_paths):
     results = []
     resize_images_np,images_size = get_resize_images_np(image_paths)
     images_num = len(images_size)
     y_pred = np.zeros(shape=(images_num,224,224))
     with self.graph.as_default():
         y_pred += inv_sigmoid(self.task1_model.predict_on_batch(resize_images_np))[:, :, :, 0]
     y_pred = sigmoid(y_pred)
     y_pred = task1_post_process(y_prediction=y_pred,threshold=0.5,gauss_sigma=2.)
     for index,image_path in enumerate(image_paths):
         image_dir,image_name,image_ext = get_fileDirectoryPath_fileName_fileExt(image_path)
         current_pred = y_pred[index]
         current_pred = current_pred * 255
         resized_pred = transform.resize(current_pred,
                                         output_shape=images_size[index],
                                         preserve_range=True,
                                         mode='reflect')
         resized_pred[resized_pred > 128] = 255
         resized_pred[resized_pred <= 128] = 0
         img = Image.fromarray(resized_pred.astype(np.uint8))
         image_path = os.path.join(task1_result_dir,image_name+"_result"+image_ext)
         img.save(image_path)
         results.append(image_path)
     return results
Example #5
0
    print('Starting prediction for set %s with TTA set to %r with num_folds %d' % (pred_set, use_tta, num_folds))

    for k_fold in range(num_folds):
        print('Processing fold ', k_fold)
        model_name = 'task%d_%s' % (task_idx, backbone_name)
        run_name = 'task%d_%s_k%d_v%s' % (task_idx, backbone_name, k_fold, version)
        model = backbone(backbone_name).segmentation_model(load_from=run_name)
        if use_tta:
            y_pred += inv_sigmoid(task1_tta_predict(model=model, img_arr=images))[:, :, :, 0]
        else:
            y_pred += inv_sigmoid(model.predict(images))[:, :, :, 0]

    print('Done predicting -- now doing post-processing')

    y_pred = y_pred / num_folds
    y_pred = sigmoid(y_pred)

    y_pred = task1_post_process(y_prediction=y_pred, threshold=0.5, gauss_sigma=2.)

    output_dir = submission_dir + '/task1_' + pred_set
    mkdir_if_not_exist([output_dir])

    for i_image, i_name in enumerate(image_names):

        current_pred = y_pred[i_image]
        current_pred = current_pred * 255

        resized_pred = sk_resize(current_pred,
                                 output_shape=image_sizes[i_image],
                                 preserve_range=True,
                                 mode='reflect',