Example #1
0
 def test_EVALUATION_crossValidation_splitRun(self):
     eval_path = os.path.join(self.tmp_dir.name, "evaluation")
     split_folds(self.sample_list, k_fold=3, evaluation_path=eval_path)
     self.assertTrue(os.path.exists(eval_path))
     self.assertTrue(os.path.exists(os.path.join(eval_path, "fold_0")))
     self.assertTrue(os.path.exists(os.path.join(eval_path, "fold_1")))
     self.assertTrue(os.path.exists(os.path.join(eval_path, "fold_2")))
     for fold in range(0, 3):
         run_fold(fold, self.model, epochs=1, iterations=None,
                  evaluation_path=eval_path, draw_figures=False,
                  callbacks=[], save_models=True)
         fold_dir =os.path.join(eval_path, "fold_0")
         self.assertTrue(os.path.exists(os.path.join(fold_dir,
                                                     "history.tsv")))
         self.assertTrue(os.path.exists(os.path.join(fold_dir,
                                                     "sample_list.json")))
         self.assertTrue(os.path.exists(os.path.join(fold_dir,
                                                     "model.hdf5")))
Example #2
0
#  You should have received a copy of the GNU General Public License           #
#  along with this program.  If not, see <http://www.gnu.org/licenses/>.       #
#==============================================================================#
#-----------------------------------------------------#
#                   Library imports                   #
#-----------------------------------------------------#
import tensorflow as tf
from miscnn.data_loading.interfaces import NIFTI_interface
from miscnn import Data_IO
from miscnn.evaluation.cross_validation import split_folds

#-----------------------------------------------------#
#                Running Preprocessing                #
#-----------------------------------------------------#
for i in range(2, 5):
    # Initialize Data IO Interface for NIfTI data
    ## We are using 4 classes due to [background, lung_left, lung_right, covid-19]
    interface = NIFTI_interface(channels=1, classes=4)

    # Create Data IO object to load and write samples in the file structure
    data_io = Data_IO(interface, input_path="data", delete_batchDir=False)

    # Access all available samples in our file structure
    sample_list = data_io.get_indiceslist()
    sample_list.sort()

    # Split samples into k (training, validation) folds
    split_folds(sample_list,
                k_fold=i,
                evaluation_path="evaluation.cv" + str(i))
Example #3
0
#-----------------------------------------------------#
#                   Library imports                   #
#-----------------------------------------------------#
import tensorflow as tf
from miscnn.data_loading.interfaces import NIFTI_interface
from miscnn import Data_IO
from miscnn.evaluation.cross_validation import split_folds

#-----------------------------------------------------#
#      Tensorflow Configuration for GPU Cluster       #
#-----------------------------------------------------#
# physical_devices = tf.config.list_physical_devices('GPU')
# tf.config.experimental.set_memory_growth(physical_devices[0], True)

#-----------------------------------------------------#
#                Running Preprocessing                #
#-----------------------------------------------------#
# Initialize Data IO Interface for NIfTI data
## We are using 4 classes due to [background, lung_left, lung_right, covid-19]
interface = NIFTI_interface(channels=1, classes=4)

# Create Data IO object to load and write samples in the file structure
data_io = Data_IO(interface, input_path="data", delete_batchDir=False)

# Access all available samples in our file structure
sample_list = data_io.get_indiceslist()
sample_list.sort()

# Split samples into k (training, validation) folds
split_folds(sample_list, k_fold=5)