Example #1
0
def apply_file_properties(n):
    file = db.get("file")
    format = db.get("format")
    sep = db.get("file_separator")
    header = db.get("file_header")
    div = None
    if format is None:
        div = None
    elif (format == 'csv' or format == 'txt') and header is None:
        div = common.error_msg('Please Select Header!!')
    elif format == 'csv' or format == 'txt':
        if sep is None:
            sep = ','
            db.put("file_separator", sep)
        path = FileUtils.path('raw', file)
        df = DataUtils.read_csv(path, sep, header)
        db.put("data", df)
        msg = "Following Properties Applied. Separator=" + sep + " Header=" + str(
            header)
        table = dbc.Table.from_dataframe(df.head(10),
                                         striped=True,
                                         bordered=True,
                                         hover=True,
                                         style=common.table_style)
        div = [common.msg(msg), table]
    return div
Example #2
0
def display_data(value):
    """Displaying the head for the selected file."""
    db_value = db.get("file")
    if value is None and db_value is None:
        return ""
    elif value is None and not db_value is None:
        value = db_value
    elif not value == db_value:
        db.reset()
    format = FileUtils.file_format(value)
    if format == 'csv' or format == 'txt':
        path = FileUtils.path('raw', value)
        head = DataUtils.read_text_head(path)
        table_col = [html.Col(style = {'width':"10%"}), html.Col(style = {'width':"90%"})]
        table_header = [html.Thead(html.Tr([html.Th("Row No"), html.Th("Data")]))]
        rows = []
        for i in range(len(head)):
            row = html.Tr([html.Td(i+1), html.Td(head[i])])
            rows.append(row)
        table_body = [html.Tbody(rows)]
        table = dbc.Table(table_col+ table_header + table_body, bordered=True, style = common.table_style)
        div =  [common.msg("Selected File: " + value),
                common.msg("Selected Format: " + format),
                table,
                html.Br(),
                csv_properties_div]
    elif format == 'jpeg' or format == 'jpg' or format == 'gif':
        div =  [common.msg("Selected File: " + value),
                common.msg("Selected Format: " + format)]
    else:
        div = "Format Not Supported!!"
    db.put("file", value)
    db.put("format", format)
    return div
def sgd_model_predict(n_clicks):
    var = db.get('sgd.model_variables')
    predict_data = db.get("sgd.model_prediction_data")
    summary = db.get('sgd.model_summary')
    model = db.get('sgd.model')
    yu = db.get('sgd.model_yu')
    n_var = len(var)

    if predict_data is None:
        return ("", "")
    if len(predict_data.split(',')) != n_var:
        return (common.error_msg('Enter Valid Prediction Data!!'), "")
    try:
        layer = db.get("sgd.model_layer")
        if layer == 1:
            feature_vector = get_predict_data_list(predict_data)
            df = pd.DataFrame(columns=var)
            df.loc[0] = feature_vector
            prediction = ann_predict(df, model, yu)
        elif layer == 2:
            feature_vector = get_predict_data_list(predict_data)
            prediction = ann_predict_h2(feature_vector, model, yu)
        reverse_quantized_classes = db.get('sgd.reverse_quantized_classes')
        prediction = reverse_quantized_classes[int(prediction)]
        db.put('sgd.prediction', prediction)
    except Exception as e:
        traceback.print_exc()
        return (common.error_msg("Exception during prediction: " + str(e)), "")
    return common.success_msg('Predicted/Classified Class = ' + prediction)
Example #4
0
def knn_model_predict(n_clicks):
    c = db.get('knn.model_class')
    predict_data = db.get("knn.model_prediction_data")
    var = db.get('knn.model_variables')
    n_var = len(var)
    k = db.get('knn.distance')
    train_df = db.get('knn.data_train')
    if predict_data is None:
        return ("" , "")
    if len(predict_data.split(',')) != n_var:
        return (common.error_msg('Enter Valid Prediction Data!!'), "")
    try:
        cols = [] + var
        cols.append(c)
        train_dataset = train_df[cols].astype(str).values.tolist()

        feature_vector = get_predict_data_list(predict_data)
        feature_vector.append('')
        feature_vector = [feature_vector]

        result = knn_predict(train_dataset, feature_vector, k)
        prediction = result[0][-1]
        print(prediction)
        db.put('knn.prediction', prediction)
    except Exception as e:
        traceback.print_exc()
        return (common.error_msg("Exception during prediction: " + str(e)), "")
    df = db.get('knn.data_train')
    df = df.iloc[:, :-1]
    div = html.Div([
        html.Div([html.H2("Predicted & Training Data Set Scatter Plot")], style={'width': '100%', 'display': 'flex', 'align-items': 'center', 'justify-content': 'center'}),
        dbc.Row([
            dbc.Col([
                dbc.Label("Select X Axis"),
                dcc.Dropdown(
                    id = 'knn-x-axis-predict',
                    options=[{'label':col, 'value':col} for col in [*df]],
                    value=None,
                    multi=False
                ),
                html.Br(),
                dbc.Label("Select Y Axis"),
                dcc.Dropdown(
                    id = 'knn-y-axis-predict',
                    options=[{'label':col, 'value':col} for col in [*df]],
                    value=None,
                    multi=False
                ),
                html.Br(),
                dbc.Button("Plot", color="primary", id = 'knn-predict-scatter-plot-button'),
                html.Div([], id = "knn-x-axis-predict-do-nothing"),
                html.Div([], id = "knn-y-axis-predict-do-nothing")
            ], md=2,
            style = {'margin': '10px', 'font-size': '16px'}),
            dbc.Col([], md=9, id="knn-scatter-plot-predict")
        ]),

    ])
    return (common.success_msg('Predicted/Classified Class = ' + prediction), div)
Example #5
0
def dtn_model_train(n_clicks):
    c = db.get('dtn.model_class')
    var = db.get('dtn.model_variables')
    max_depth = db.get('dtn.max_depth')
    min_size = db.get('dtn.min_size')
    folds = 5
    if c is None or var is None or max_depth is None or min_size is None:
        div = ""
    elif (not c is None) and (not var is None) and (not max_depth is None) and (not min_size is None):
        try:
            path = FileUtils.path('extra', 'banknote.csv')

            tree, avg_score, avg_f1_score = train(path, max_depth, min_size, folds)

            summary = {}
            summary['Max Depth'] = max_depth
            summary['Min Size'] = min_size
            summary['Folds'] = folds
            summary['Average Score'] = round(avg_score, 4)
            summary['Average F1 Score'] = round(avg_f1_score, 4)
            summary_df = pd.DataFrame(summary.items(), columns=['Parameters', 'Value'])

            db.put('dtn.model_summary', summary)
            db.put('dtn.model_instance', tree)
        except Exception as e:
            traceback.print_exc()
            return common.error_msg("Exception during training model: " + str(e))

        div = html.Div([
            html.H2('Model Parameters & Summary:'),
            dbc.Table.from_dataframe(summary_df, striped=True, bordered=True, hover=True, style = common.table_style),
            html.Br(),
            html.H2('Tree'),
            html.H2(str(tree)),
            ])
    else:
        div = common.error_msg('Select Proper Model Parameters!!')
    return div
def dt_model_predict(n_clicks):
    var = db.get('dt.model_variables')
    predict_data = db.get("dt.model_prediction_data")
    model = db.get('dt.model_instance')
    n_var = len(var)

    if predict_data is None:
        return ("" , "")
    if len(predict_data.split(',')) != n_var:
        return (common.error_msg('Enter Valid Prediction Data!!'), "")
    try:
        feature_vector = get_predict_data_list(predict_data)
        feature_vector.append(-1)
        feature_vector = [feature_vector]

        prediction = model.predict(feature_vector)
        print(prediction)
        prediction = str(prediction[0])
        db.put('dt.prediction', prediction)
    except Exception as e:
        traceback.print_exc()
        return (common.error_msg("Exception during prediction: " + str(e)), "")
    return common.success_msg('Predicted/Classified Class = ' + prediction)
def dt_display_selected_file_scatter_plot(value):
    db_value = db.get("dt.file")
    if value is None and db_value is None:
        return common.msg("Please select a cleaned file to proceed!!")
    elif value is None and not db_value is None:
        value = db_value

    db.put("dt.file", value)
    file = value
    path = FileUtils.path('clean', file)
    df = DataUtils.read_csv(path)
    db.put("dt.data", df)

    div = html.Div([
        common.msg("Selected cleaned file: "+ file),
        dbc.Table.from_dataframe(df.head(10).astype(str), striped=True, bordered=True, hover=True, style = common.table_style),
        #html.Div([html.H3("Data Statistics")], style={'width': '100%', 'display': 'flex', 'align-items': 'center', 'justify-content': 'center'}),
        #dbc.Table.from_dataframe(stats, striped=True, bordered=True, hover=True, style = common.table_style),
        html.Br(),
        get_dt_model_properties_div(df),
        html.Div([], id = "dt-trained-model", style = {'margin': '10px'}),
    ])

    return div
Example #8
0
def dtn_display_selected_file_scatter_plot(value):
    value = "banknote"
    db.put("dtn.file", value)
    file = value
    path = FileUtils.path('clean', file)
    df = DataUtils.read_csv(path)
    save_path = FileUtils.path('extra', 'banknote.csv')
    df.to_csv(save_path, index=False, header = False)
    db.put("dtn.data", df)

    db.put('dtn.model_class', 'class')
    db.put('dtn.model_variables', ['variance','skewness','curtosis','entropy'])

    call_path = FileUtils.path('nets', 'dt_banknote_call1.csv')
    cdf = DataUtils.read_csv(call_path)

    trace_1 = go.Scatter(x = cdf['max_depth'], y = cdf['avg_train_score'], name = 'Average Train Score')
    trace_2 = go.Scatter(x = cdf['max_depth'], y = cdf['avg_test_score'], name = 'Average Test Score')
    title = go.Layout(title = 'Depth of Tree Vs Performance Plot', hovermode = 'closest', xaxis={'title': 'Depth of Tree'}, yaxis={'title': 'Performance'})
    fig = go.Figure(data = [trace_1, trace_2], layout = title)

    div = html.Div([
        common.msg("Selected cleaned file: "+ file),
        dbc.Table.from_dataframe(df.head(10).round(5).astype(str), striped=True, bordered=True, hover=True, style = common.table_style),
        html.Br(),
        html.H2('Using Default parameters for both max_depth and min_size.'),
        html.H2('Max Depth = 2 to 15'),
        html.H2('Min Size = 10'),
        dbc.Table.from_dataframe(cdf.round(4), striped=True, bordered=True, hover=True, style = common.table_style),
        html.Br(),
        dcc.Graph(id='dtn-plot', figure=fig),
        html.Br(),
        get_dtn_model_properties_div(df),
        dcc.Loading(id="dtn-model-training",
            children=[html.Div([], id = "dtn-trained-model", style = {'margin': '10px'})],
            type="default"),
    ])

    return div
Example #9
0
def knn_model_prediction_data(value):
    if not value is None:
        db.put("knn.model_prediction_data", value)
    return None
Example #10
0
def knn_model_train(n_clicks):
    c = db.get('knn.model_class')
    var = db.get('knn.model_variables')
    train = db.get('knn.model_train')
    k = db.get('knn.distance')
    file = db.get("knn.file")
    if c is None and var is None and train is None and k is None:
        div = ""
    elif train is None or train < 0 or train > 100:
        div = common.error_msg('Training % should be between 0 - 100 !!')
    elif (not c is None) and (not var is None) and (not train is None) and (not k is None):

        try:
            cols = [] + var
            cols.append(c)
            df = db.get('knn.data')
            df = df[cols]

            train_df, test_df = common.split_df(df, c, train)
            
            distinct_count_df_total = get_distinct_count_df(df, c, 'Total Count')
            distinct_count_df_train = get_distinct_count_df(train_df, c, 'Training Count')
            distinct_count_df_test = get_distinct_count_df(test_df, c, 'Testing Count')

            distinct_count_df = distinct_count_df_total.join(distinct_count_df_train.set_index('Class'), on='Class')
            distinct_count_df = distinct_count_df.join(distinct_count_df_test.set_index('Class'), on='Class')

            train_dataset = train_df[cols].astype(str).values.tolist()
            test_dataset = test_df[cols].astype(str).values.tolist()

            result = knn_predict(train_dataset, test_dataset, k)
            cc_percentage = calculate_predict_accuracy(result)

            summary = {}
            summary['Total Training Data'] = len(train_df)
            summary['Total Testing Data'] = len(test_df)
            summary['Total Number of Features in Dataset'] = len(var)
            summary['Model Accuracy %'] = round(cc_percentage, 2)
            summary['Features'] = str(var)
            summary_df = pd.DataFrame(summary.items(), columns=['Parameters', 'Value'])

            db.put('knn.data_train', train_df)
            db.put('knn.data_test', test_df)
            db.put('knn.model_summary', summary)
            classes = df[c].unique()
            confusion_df = get_confusion_matrix(result, classes)
        except Exception as e:
            traceback.print_exc()
            return common.error_msg("Exception during training model: " + str(e))

        div = html.Div([
            html.H2('Class Grouping in Data:'),
            dbc.Table.from_dataframe(distinct_count_df, striped=True, bordered=True, hover=True, style = common.table_style),
            html.H2('Model Parameters & Summary:'),
            dbc.Table.from_dataframe(summary_df, striped=True, bordered=True, hover=True, style = common.table_style),
            html.H2('Confusion Matrix (Precision & Recall):'),
            dbc.Table.from_dataframe(confusion_df, striped=True, bordered=True, hover=True, style = common.table_style),
            html.H2('Prediction/Classification:'),
            html.P('Features to be Predicted (comma separated): ' + ','.join(var), style = {'font-size': '16px'}),
            dbc.Input(id="knn-prediction-data", placeholder=','.join(var), type="text"),
            html.Br(),
            dbc.Button("Predict", color="primary", id = 'knn-predict'),
            html.Div([], id = "knn-prediction"),
            html.Div([],id = "knn-predicted-scatter-plot")
        ])
    else:
        div = common.error_msg('Select Proper Model Parameters!!')
    return div
Example #11
0
def knn_model_lr(value):
    if not value is None:
        db.put("knn.distance", value)
    return None
Example #12
0
def knn_model_train(value):
    if not value is None:
        db.put("knn.model_train", value)
    return None
def sgd_model_train(value):
    if not value is None:
        db.put("sgd.model_train", value)
    return None
def nlcl_model_class(value):
    if not value is None:
        db.put("nlcl.model_class", value)
    return None
def nlcl_model_prediction_data(value):
    if not value is None:
        db.put("nlcl.model_prediction_data", value)
    return None
def nlcl_model_train(value):
    if not value is None:
        db.put("nlcl.model_train", value)
    return None
def sgd_model_prediction_data(value):
    if not value is None:
        db.put("sgd.model_prediction_data", value)
    return None
def sgd_model_train(n_clicks):
    c = db.get('sgd.model_class')
    var = db.get('sgd.model_variables')
    train = db.get('sgd.model_train')
    #test = db.get('sgd.model_test')
    lr = db.get('sgd.model_lr')
    epoch = db.get('sgd.model_epoch')
    #no_of_hidden_layer = db.get('sgd.no_of_hidden_layer')
    no_of_neuron = db.get('sgd.no_of_neuron')
    no_of_neuron_h2 = db.get('sgd.no_of_neuron_h2')
    layer = 1
    if not no_of_neuron_h2 is None:
        layer = 2
    db.put("sgd.model_layer", layer)
    if c is None and var is None and train is None and lr is None and epoch is None:
        div = ""
    elif train is None or train < 0 or train > 100:
        div = common.error_msg('Training % should be between 0 - 100 !!')
    elif (not c is None) and (not var is None) and (not train is None) and (
            not lr is None) and (not epoch is None):
        try:
            cols = [] + var
            cols.append(c)
            df = db.get('sgd.data')
            df = df[cols]
            ## Make DataFrame compatible for SGD API ##
            df, quantized_classes, reverse_quantized_classes = quantized_class(
                df, c)

            train_df, test_df = common.split_df(df, c, train)

            distinct_count_df_total = get_distinct_count_df(
                df, c, 'Total Count')
            distinct_count_df_train = get_distinct_count_df(
                train_df, c, 'Training Count')
            distinct_count_df_test = get_distinct_count_df(
                test_df, c, 'Testing Count')

            distinct_count_df = distinct_count_df_total.join(
                distinct_count_df_train.set_index('Class'), on='Class')
            distinct_count_df = distinct_count_df.join(
                distinct_count_df_test.set_index('Class'), on='Class')
            distinct_count_df['Class'] = distinct_count_df['Class'].map(
                reverse_quantized_classes)

            if layer == 1:
                ycap, loss_dict, cc_percentage, wc_percentage, model, yu = ann_training(
                    train_df[var], train_df[c], no_of_neuron, lr, epoch)
                ycap, cc_percentage, wc_percentage = ann_testing(
                    test_df[var], test_df[c], model, yu)
            elif layer == 2:
                ycap, loss_dict, cc_percentage, wc_percentage, model, yu = ann_training_h2(
                    train_df[var], train_df[c], no_of_neuron, no_of_neuron_h2,
                    lr, epoch)
                ycap, cc_percentage, wc_percentage = ann_testing_h2(
                    train_df[var], train_df[c], model, yu)

            summary = {}
            summary['Total Training Data'] = len(train_df)
            summary['Total Testing Data'] = len(test_df)
            summary['Total Number of Features in Dataset'] = len(var)
            summary['Total no of Layers'] = layer + 2
            summary['No of Hidden Layer'] = layer
            summary['No of Neuron in Hidden Layer 1'] = no_of_neuron
            summary['No of Neuron in Hidden Layer 2'] = no_of_neuron_h2
            summary['Activation Function'] = 'Sigmoid'
            summary['Learning rate'] = lr
            summary['Epochs'] = epoch
            summary['Model Accuracy'] = round(cc_percentage, 2)
            summary['Features'] = str(var)
            summary_df = pd.DataFrame(summary.items(),
                                      columns=['Parameters', 'Value'])

            db.put('sgd.data_train', train_df)
            db.put('sgd.data_test', test_df)
            db.put('sgd.quantized_classes', quantized_classes)
            db.put('sgd.reverse_quantized_classes', reverse_quantized_classes)
            db.put('sgd.model', model)
            db.put('sgd.model_yu', yu)
            db.put('sgd.summary', summary)
            confusion_df = get_confusion_matrix(test_df, c, var, model, yu,
                                                reverse_quantized_classes)
        except Exception as e:
            traceback.print_exc()
            return common.error_msg("Exception during training model: " +
                                    str(e))

        trace = go.Scatter(x=loss_dict['Epoch_no'],
                           y=loss_dict['Loss'],
                           line=dict(width=2, color='rgb(106, 181, 135)'))
        convergence_title = go.Layout(title='Convergence Plot',
                                      hovermode='closest',
                                      xaxis={'title': 'Epoch'},
                                      yaxis={'title': 'Loss Function'})
        convergence_fig = go.Figure(data=[trace], layout=convergence_title)

        div = html.Div([
            html.H2('Class Grouping in Data:'),
            dbc.Table.from_dataframe(distinct_count_df,
                                     striped=True,
                                     bordered=True,
                                     hover=True,
                                     style=common.table_style),
            html.H2('Model Parameters & Summary:'),
            dbc.Table.from_dataframe(summary_df,
                                     striped=True,
                                     bordered=True,
                                     hover=True,
                                     style=common.table_style),
            html.Br(),
            dcc.Graph(id='sgd-convergence-plot', figure=convergence_fig),
            html.H2('Confusion Matrix (Precision & Recall):'),
            dbc.Table.from_dataframe(confusion_df,
                                     striped=True,
                                     bordered=True,
                                     hover=True,
                                     style=common.table_style),
            html.Br(),
            html.Br()
        ])
    else:
        div = common.error_msg('Select Proper Model Parameters!!')
    return div
def sgd_model_epoch(value):
    if not value is None:
        db.put("sgd.model_epoch", value)
    return None
def sgd_model_lr(value):
    if not value is None:
        db.put("sgd.model_lr", value)
    return None
def sgd_model_neuron_h2(value):
    if not value is None:
        db.put("sgd.no_of_neuron_h2", value)
    return None
Example #22
0
def knn_y_axis(value):
    if not value is None:
        db.put("knn.y_axis_predict", value)
    return None
def nlcl_y_axis(value):
    if not value is None:
        db.put("nlcl.y_axis", value)
    return None
Example #24
0
def knn_model_variables(value):
    if not value is None:
        db.put("knn.model_variables", value)
    return None
def nlcl_model_variables(value):
    if not value is None:
        db.put("nlcl.model_variables", value)
    return None
def sgd_model_variables(value):
    if not value is None:
        db.put("sgd.model_variables", value)
    return None
def nlcl_model_train(n_clicks):
    c = db.get('nlcl.model_class')
    var = db.get('nlcl.model_variables')
    train = db.get('nlcl.model_train')
    if c is None and var is None and train is None:
        div = ""
    elif train is None or train < 0 or train > 100:
        div = common.error_msg('Training % should be between 0 - 100 !!')
    elif len(var) != 2:
        div = common.error_msg('Select Two Features!!')
    elif (not c is None) and (not var is None) and (not train is None):

        try:
            cols = [] + var
            cols.append(c)
            df = db.get('nlcl.data')
            df = df[cols]


            train_df, test_df = common.split_df(df, c, train)
            train_df.columns = ['X1', 'X2', 'Class']

            distinct_count_df_total = get_distinct_count_df(df, c, 'Total Count')
            distinct_count_df_train = get_distinct_count_df(train_df, c, 'Training Count')
            distinct_count_df_test = get_distinct_count_df(test_df, c, 'Testing Count')

            distinct_count_df = distinct_count_df_total.join(distinct_count_df_train.set_index('Class'), on='Class')
            distinct_count_df = distinct_count_df.join(distinct_count_df_test.set_index('Class'), on='Class')

            model = non_separable_train(train_df)
            print(model)
            summary = {}
            summary['Total Training Data'] = len(train_df)
            summary['Total Testing Data'] = len(test_df)
            summary['Total Number of Features in Dataset'] = len(var)
            summary['Model Accuracy %'] = 'TODO'
            summary['Features'] = str(var)
            summary_df = pd.DataFrame(summary.items(), columns=['Parameters', 'Value'])

            db.put('nlcl.data_train', train_df)
            db.put('nlcl.data_test', test_df)
            db.put('nlcl.model_summary', summary)
            db.put('nlcl.model_instance', model)
            #confusion_df = get_confusion_matrix(test_df, c, var, instanceOfLR)
        except Exception as e:
            traceback.print_exc()
            return common.error_msg("Exception during training model: " + str(e))

        clazz_col = c
        train_df.columns = cols
        df = train_df
        x_col = var[0]
        y_col = var[1]
        x1, y1 = get_rect_coordinates(model[0])
        x2, y2 = get_rect_coordinates(model[1])
        x3, y3 = get_rect_coordinates(model[2])
        graph_data = [
            go.Scatter(
                x=df[df[clazz_col] == clazz][x_col],
                y=df[df[clazz_col] == clazz][y_col],
                text=df[df[clazz_col] == clazz][clazz_col],
                mode='markers',
                opacity=0.8,
                marker={
                    'size': 15,
                    'line': {'width': 0.5, 'color': 'white'}
                },
                name=clazz
            ) for clazz in df[clazz_col].unique()
        ]
        graph_data.append(go.Scatter(x=x1, y=y1, text = 'Specific Rectangle', name = 'Specific Rectangle'))
        graph_data.append(go.Scatter(x=x3, y=y3, text = 'Optimal Rectangle', name = 'Optimal Rectangle'))
        graph_data.append(go.Scatter(x=x2, y=y2, text = 'Generic Rectangle', name = 'Generic Rectangle'))

        graph = dcc.Graph(
            id='nlcl-x-vs-y-rectangle',
            figure={
                'data': graph_data,
                'layout': dict(
                    title='Boundaries & Train Data Set Scatter Plot',
                    xaxis={'title': x_col},
                    yaxis={'title': y_col},
                    margin={'l': 40, 'b': 40},
                    legend={'x': 0, 'y': 1},
                    hovermode='closest'
                )
            }
        )

        div = html.Div([
            html.H2('Class Grouping in Data:'),
            dbc.Table.from_dataframe(distinct_count_df, striped=True, bordered=True, hover=True, style = common.table_style),
            html.H2('Model Parameters & Summary:'),
            dbc.Table.from_dataframe(summary_df, striped=True, bordered=True, hover=True, style = common.table_style),
            html.Br(),
            graph,
            #html.H2('Confusion Matrix (Precision & Recall):'),
            #dbc.Table.from_dataframe(confusion_df, striped=True, bordered=True, hover=True, style = common.table_style),
            html.H2('Prediction/Classification:'),
            html.P('Features to be Predicted (comma separated): ' + ','.join(var), style = {'font-size': '16px'}),
            dbc.Input(id="nlcl-prediction-data", placeholder=','.join(var), type="text"),
            html.Br(),
            dbc.Button("Predict", color="primary", id = 'nlcl-predict'),
            html.Div([], id = "nlcl-prediction"),
            html.Div([],id = "nlcl-predicted-scatter-plot")
        ])
    else:
        div = common.error_msg('Select Proper Model Parameters!!')
    return div
Example #28
0
def knn_x_axis(value):
    if not value is None:
        db.put("knn.x_axis", value)
    return None
def nlcl_display_selected_file_scatter_plot(value):
    db_value = db.get("nlcl.file")
    if value is None and db_value is None:
        return common.msg("Please select a cleaned file to proceed!!")
    elif value is None and not db_value is None:
        value = db_value

    db.put("nlcl.file", value)
    file = value
    path = FileUtils.path('clean', file)
    df = DataUtils.read_csv(path)
    db.put("nlcl.data", df)

    stats = df.describe(include = 'all').head(6).round(5)
    stats.insert(loc=0, column='Statistics', value=['Count','unique','top','freq','Mean','Standard Deviation'])
    stats = stats.drop(stats.index[[1,2,3]])

    div = html.Div([
        common.msg("Selected cleaned file: "+ file),
        dbc.Table.from_dataframe(df.head(10), striped=True, bordered=True, hover=True, style = common.table_style),
        html.Div([html.H3("Data Statistics")], style={'width': '100%', 'display': 'flex', 'align-items': 'center', 'justify-content': 'center'}),
        dbc.Table.from_dataframe(stats, striped=True, bordered=True, hover=True, style = common.table_style),
        html.Br(),
        html.Div([html.H2("Scatter Plot")], style={'width': '100%', 'display': 'flex', 'align-items': 'center', 'justify-content': 'center'}),
        dbc.Row([
            dbc.Col([
                dbc.Label("Select Class"),
                dcc.Dropdown(
                    id = 'nlcl-class',
                    options=[{'label':col, 'value':col} for col in [*df]],
                    value=None,
                    multi=False
                ),
                html.Br(),
                dbc.Label("Select X Axis"),
                dcc.Dropdown(
                    id = 'nlcl-x-axis',
                    options=[{'label':col, 'value':col} for col in [*df]],
                    value=None,
                    multi=False
                ),
                html.Br(),
                dbc.Label("Select Y Axis"),
                dcc.Dropdown(
                    id = 'nlcl-y-axis',
                    options=[{'label':col, 'value':col} for col in [*df]],
                    value=None,
                    multi=False
                ),
                html.Br(),
                dbc.Button("Plot", color="primary", id = 'nlcl-scatter-plot-button'),
                html.Div([], id = "nlcl-class-do-nothing"),
                html.Div([], id = "nlcl-x-axis-do-nothing"),
                html.Div([], id = "nlcl-y-axis-do-nothing")
            ], md=2,
            style = {'margin': '10px', 'font-size': '16px'}),
            dbc.Col([], md=9, id="nlcl-scatter-plot")
        ]),
        html.Br(),
        get_nlcl_model_properties_div(df),
        html.Div([], id = "nlcl-trained-model", style = {'margin': '10px'}),
    ])

    return div
Example #30
0
def knn_model_class(value):
    if not value is None:
        db.put("knn.model_class", value)
    return None