def test_registry(self): registry = MLRegistry() self.assertEqual(len(registry.endpoints), 0) endpoint_name = "classifier" algorithm_object = RandomForestClassifier() algorithm_name = "random forest" algorithm_status = "production" algorithm_version = "0.0.1" algorithm_owner = "Kami" algorithm_description = "Random Forest with simple pre- and post-processing" registry.add_algorithm(endpoint_name, algorithm_object, algorithm_name, algorithm_status, algorithm_version, algorithm_owner, algorithm_description) print(registry) self.assertEqual(len(registry.endpoints), 1)
def test_registry(self): registry = MLRegistry() self.assertEqual(len(registry.endpoints), 0) algorithm_object = BookRatePredictor() algorithm_name = "xgboost" algorithm_version = "1.0.1" algorithm_owner = "from kpi import iasa" algorithm_description = "Book rate estimator" algorithm_code = inspect.getsource(BookRatePredictor) # add to registry registry.add_algorithm(algorithm_name, algorithm_version, algorithm_owner, algorithm_description, algorithm_code, algorithm_object) # there should be one endpoint available self.assertEqual(len(registry.endpoints), 1)
def test_registry(self): registry = MLRegistry() self.assertEqual(len(registry.endpoints), 0) endpoint_name = 'income_classifier' algorithm_object = RandomForest() algorithm_name = "random forest" algorithm_status = "production" algorithm_version = "0.0.1" algorithm_owner = "Piotr" algorithm_description = "Random Forest with simple pre- and post-processing" algorithm_code = inspect.getsource(RandomForest) registry.add_algorithm(endpoint_name, algorithm_object, algorithm_name, algorithm_status, algorithm_version, algorithm_owner, algorithm_description, algorithm_code) # there should be one endpoint available self.assertEqual(len(registry.endpoints), 1)
def test_registry(self): registry = MLRegistry() self.assertEqual(len(registry.endpoints), 0) endpoint_name = "income_classifier" algorithm_object = RandomForestClassifier() algorithm_name = "random forest" algorithm_status = "production" algorithm_version = "0.0.1" algorithm_owner = "Piotr" algorithm_description = "Random Forest with simple pre- and post-processing" algorithm_code = inspect.getsource(RandomForestClassifier) # add to registry registry.add_algorithm(endpoint_name, algorithm_object, algorithm_name, algorithm_status, algorithm_version, algorithm_owner, algorithm_description, algorithm_code) # there should be one endpoint available self.assertEqual(len(registry.endpoints), 1) def test_et_algorithm(self): input_data = { "age": 37, "workclass": "Private", "fnlwgt": 34146, "education": "HS-grad", "education-num": 9, "marital-status": "Married-civ-spouse", "occupation": "Craft-repair", "relationship": "Husband", "race": "White", "sex": "Male", "capital-gain": 0, "capital-loss": 0, "hours-per-week": 68, "native-country": "United-States" } my_alg = ExtraTreesClassifier() response = my_alg.compute_prediction(input_data) self.assertEqual('OK', response['status']) self.assertTrue('label' in response) self.assertEqual('<=50K', response['label'])
import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'server.settings') application = get_wsgi_application() # ML registry from ml.registry import MLRegistry from ml.classifier.random_forest import RandomForestClassifier try: # create ML registry registry = MLRegistry() # Random Forest classifier rf = RandomForestClassifier() # add to ML registry registry.add_algorithm( endpoint_name="classifier", algorithm_object=rf, algorithm_name="random forest", algorithm_status="production", algorithm_version="0.0.1", owner="Kami", algorithm_description= "Random Forest with simple pre- and post-processing") except Exception as e: print("Exception while loading the algorithms to the registry,", str(e))
import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'recommendations.settings') application = get_wsgi_application() from ml.registry import MLRegistry # from ml.knn import KNN from ml.bert import BERT from utils import custom_logging try: registry = MLRegistry() # knn = KNN('/code/ml/knn/') # registry.add_algorithm("knn", knn) bert = BERT() registry.add_algorithm("bert", bert) print('ke') except Exception as e: print("Exception while loading the algorithms to the registry,", str(e))
https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'server.settings') application = get_wsgi_application() import inspect from ml.registry import MLRegistry from ml.income.random_forest import RandomForestClassifier try: registry = MLRegistry() # create ML registry # Random Forest classifier rf = RandomForestClassifier() # add to ML registry registry.add_algorithm(endpoint_name="income", algorithm_object=rf, algorithm_name="random forest", algorithm_status="production", algorithm_version="0.0.1", owner="Piotr", algorithm_description="Random Forest with simple pre- and post-processing", algorithm_code=inspect.getsource(RandomForestClassifier)) except Exception as e: print("Exception while loading the algorithms to the registry,", str(e))
https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'server.settings') application = get_wsgi_application() # ML registry import inspect from ml.registry import MLRegistry from ml.income_classifier.random_forest import RandomForest from ml.income_classifier.extra_trees import ExtraTrees try: registry = MLRegistry() #Creates ML registry rf = RandomForest() registry.add_algorithm(endpoint_name="income_classifier", algorithm_object=rf, algorithm_name="random forest", algorithm_status="production", algorithm_version="0.0.1", owner="Gabriel", algorithm_description="Random Forest with simple pre- and post-processing", algorithm_code=inspect.getsource(RandomForest)) et = ExtraTrees() registry.add_algorithm(endpoint_name="income_classifier", algorithm_object=et, algorithm_name="extra trees", algorithm_status="testing", algorithm_version="0.0.1", owner="Gabriel", algorithm_description="Extra Trees with simple pre- and post-processing",
import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'coursework.settings') application = get_wsgi_application() import inspect from ml.registry import MLRegistry from ml.classifier.log import Models from ml.classifier.ada import Ada try: registry = MLRegistry() # create ML registry # Random Forest classifier rf = Models() # add to ML registry registry.add_algorithm(endpoint_name="classifier", algorithm_object=rf, algorithm_name="Models", algorithm_status="production", algorithm_version="0.0.1", owner="Piotr", algorithm_description="Models with simple pre- and post-processing", algorithm_code=inspect.getsource(Models)) # Extra Trees classifier et =Ada() # add to ML registry
It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'server.settings') application = get_wsgi_application() # ML registry import inspect from ml.registry import MLRegistry from ml.predictor.predictor import BookRatePredictor try: registry = MLRegistry() # create ML registry # Random Forest classifier pred = BookRatePredictor() # add to ML registry registry.add_algorithm(algorithm_object=pred, algorithm_name="xgboost", algorithm_version="1.0.1", algorithm_owner="from kpi import iasa", algorithm_description="Book rate estimator", algorithm_code=inspect.getsource(BookRatePredictor)) except Exception as e: print("Exception while loading the algorithms to the registry,", str(e))