def update_model(self, states: str, actions: str, q_vals_target: str) -> None: """ Takes in states, actions, and target q values. Updates the model: Runs the forward pass, computing Q(states, actions). Q(states, actions)[i][j] is an approximation of Q*(states[i], action_j). Comptutes Loss of Q(states, actions) with respect to q_vals_targets Updates Q Network's weights according to loss and optimizer :param states: Numpy array with shape (batch_size, state_dim). The ith row is a representation of the ith transition's state. :param actions: Numpy array with shape (batch_size, action_dim). The ith row contains the one-hotted representation of the ith action. :param q_vals_targets: Numpy array with shape (batch_size, 1). The ith row is the label to train against for the data from the ith transition. """ model = C2.model() q_vals_target = C2.StopGradient(q_vals_target) output_blob = C2.NextBlob("train_output") if self.conv_ml_trainer is not None: conv_output_blob = C2.NextBlob("conv_output") self.conv_ml_trainer.make_conv_pass_ops(model, states, conv_output_blob) states = conv_output_blob self.ml_trainer.make_forward_pass_ops(model, states, output_blob, False) q_val_select = C2.ReduceBackSum(C2.Mul(output_blob, actions)) q_values = C2.ExpandDims(q_val_select, dims=[1]) self.loss_blob = self.ml_trainer.generateLossOps(model, q_values, q_vals_target) model.AddGradientOperators([self.loss_blob]) for param in model.params: if param in model.param_to_grad: param_grad = model.param_to_grad[param] param_grad = C2.NanCheck(param_grad) self.ml_trainer.addParameterUpdateOps(model)
def update_model( self, states: str, actions: str, q_vals_target: str, ) -> None: """ Takes in states, actions, and target q values. Updates the model: Runs the forward pass, computing Q(states, actions). Q(states, actions)[i][j] is an approximation of Q*(states[i], action_j). Comptutes Loss of Q(states, actions) with respect to q_vals_targets Updates Q Network's weights according to loss and optimizer :param states: Numpy array with shape (batch_size, state_dim). The ith row is a representation of the ith transition's state. :param actions: Numpy array with shape (batch_size, action_dim). The ith row contains the one-hotted representation of the ith action. :param q_vals_targets: Numpy array with shape (batch_size, 1). The ith row is the label to train against for the data from the ith transition. """ model = C2.model() q_vals_target = C2.StopGradient(q_vals_target) output_blob = C2.NextBlob("train_output") MakeForwardPassOps( model, self.model_id, states, output_blob, self.weights, self.biases, self.activations, self.layers, self.dropout_ratio, False, ) q_val_select = C2.ReduceBackSum(C2.Mul(output_blob, actions)) q_values = C2.ExpandDims(q_val_select, dims=[1]) self.loss_blob = GenerateLossOps( model, q_values, q_vals_target, ) model.AddGradientOperators([self.loss_blob]) for param in model.params: if param in model.param_to_grad: param_grad = model.param_to_grad[param] param_grad = C2.NanCheck(param_grad) AddParameterUpdateOps( model, optimizer_input=self.optimizer, base_learning_rate=self.learning_rate, gamma=self.gamma, policy=self.lr_policy, )
def normalize_sparse_matrix( self, lengths_blob: str, keys_blob: str, values_blob: str, normalization_parameters: Dict[int, NormalizationParameters], blobname_prefix: str, split_sparse_to_dense: bool, split_expensive_feature_groups: bool, normalize: bool = True, sorted_features_override: List[int] = None, ) -> Tuple[str, List[str]]: if sorted_features_override: sorted_features = sorted_features_override else: sorted_features, _ = sort_features_by_normalization( normalization_parameters) int_features = [int(feature) for feature in sorted_features] preprocess_num_batches = 8 if split_sparse_to_dense else 1 lengths_batch = [] keys_batch = [] values_batch = [] for _ in range(preprocess_num_batches): lengths_batch.append(C2.NextBlob(blobname_prefix + "_length_batch")) keys_batch.append(C2.NextBlob(blobname_prefix + "_key_batch")) values_batch.append(C2.NextBlob(blobname_prefix + "_value_batch")) C2.net().Split([lengths_blob], lengths_batch, axis=0) total_lengths_batch = [] for x in range(preprocess_num_batches): total_lengths_batch.append( C2.Reshape(C2.ReduceBackSum(lengths_batch[x], num_reduce_dims=1), shape=[1])[0]) total_lengths_batch_concat, _ = C2.Concat(*total_lengths_batch, axis=0) C2.net().Split([keys_blob, total_lengths_batch_concat], keys_batch, axis=0) C2.net().Split([values_blob, total_lengths_batch_concat], values_batch, axis=0) dense_input_fragments = [] parameters: List[str] = [] MISSING_SCALAR = self._store_parameter( parameters, "MISSING_SCALAR", np.array([MISSING_VALUE], dtype=np.float32)) C2.net().GivenTensorFill([], [MISSING_SCALAR], shape=[], values=[MISSING_VALUE]) for preprocess_batch in range(preprocess_num_batches): dense_input_fragment = C2.SparseToDenseMask( keys_batch[preprocess_batch], values_batch[preprocess_batch], MISSING_SCALAR, lengths_batch[preprocess_batch], mask=int_features, )[0] if normalize: normalized_fragment, p = self.normalize_dense_matrix( dense_input_fragment, sorted_features, normalization_parameters, blobname_prefix, split_expensive_feature_groups, ) dense_input_fragments.append(normalized_fragment) parameters.extend(p) else: dense_input_fragments.append(dense_input_fragment) dense_input = C2.NextBlob(blobname_prefix + "_dense_input") dense_input_dims = C2.NextBlob(blobname_prefix + "_dense_input_dims") C2.net().Concat(dense_input_fragments, [dense_input, dense_input_dims], axis=0) return dense_input, parameters