def get_sac_parameters(
     self,
     use_2_q_functions=False,
     logged_action_uniform_prior=True,
     constrain_action_sum=False,
 ):
     return SACModelParameters(
         rl=RLParameters(gamma=DISCOUNT, target_update_rate=0.5),
         training=SACTrainingParameters(
             minibatch_size=self.minibatch_size,
             use_2_q_functions=use_2_q_functions,
             q_network_optimizer=OptimizerParameters(),
             value_network_optimizer=OptimizerParameters(),
             actor_network_optimizer=OptimizerParameters(),
             alpha_optimizer=OptimizerParameters(),
             logged_action_uniform_prior=logged_action_uniform_prior,
         ),
         q_network=FeedForwardParameters(layers=[128, 64],
                                         activations=["relu", "relu"]),
         value_network=FeedForwardParameters(layers=[128, 64],
                                             activations=["relu", "relu"]),
         actor_network=FeedForwardParameters(layers=[128, 64],
                                             activations=["relu", "relu"]),
         constrain_action_sum=constrain_action_sum,
     )
 def get_sac_parameters(self, use_2_q_functions=False):
     return SACModelParameters(
         rl=RLParameters(gamma=DISCOUNT,
                         target_update_rate=0.5,
                         reward_burnin=100),
         training=SACTrainingParameters(
             minibatch_size=self.minibatch_size,
             use_2_q_functions=use_2_q_functions,
             q_network_optimizer=OptimizerParameters(),
             value_network_optimizer=OptimizerParameters(),
             actor_network_optimizer=OptimizerParameters(),
         ),
         q_network=FeedForwardParameters(layers=[128, 64],
                                         activations=["relu", "relu"]),
         value_network=FeedForwardParameters(layers=[128, 64],
                                             activations=["relu", "relu"]),
         actor_network=FeedForwardParameters(layers=[128, 64],
                                             activations=["relu", "relu"]),
     )
Example #3
0
def create_trainer(model_type, params, rl_parameters, use_gpu, env):
    if model_type == ModelType.PYTORCH_DISCRETE_DQN.value:
        training_parameters = params["training"]
        if isinstance(training_parameters, dict):
            training_parameters = TrainingParameters(**training_parameters)
        rainbow_parameters = params["rainbow"]
        if isinstance(rainbow_parameters, dict):
            rainbow_parameters = RainbowDQNParameters(**rainbow_parameters)
        if env.img:
            assert (training_parameters.cnn_parameters
                    is not None), "Missing CNN parameters for image input"
            if isinstance(training_parameters.cnn_parameters, dict):
                training_parameters.cnn_parameters = CNNParameters(
                    **training_parameters.cnn_parameters)
            training_parameters.cnn_parameters.conv_dims[
                0] = env.num_input_channels
            training_parameters.cnn_parameters.input_height = env.height
            training_parameters.cnn_parameters.input_width = env.width
            training_parameters.cnn_parameters.num_input_channels = (
                env.num_input_channels)
        else:
            assert (training_parameters.cnn_parameters is
                    None), "Extra CNN parameters for non-image input"
        trainer_params = DiscreteActionModelParameters(
            actions=env.actions,
            rl=rl_parameters,
            training=training_parameters,
            rainbow=rainbow_parameters,
        )
        trainer = DQNTrainer(trainer_params, env.normalization, use_gpu)

    elif model_type == ModelType.PYTORCH_PARAMETRIC_DQN.value:
        training_parameters = params["training"]
        if isinstance(training_parameters, dict):
            training_parameters = TrainingParameters(**training_parameters)
        rainbow_parameters = params["rainbow"]
        if isinstance(rainbow_parameters, dict):
            rainbow_parameters = RainbowDQNParameters(**rainbow_parameters)
        if env.img:
            assert (training_parameters.cnn_parameters
                    is not None), "Missing CNN parameters for image input"
            training_parameters.cnn_parameters.conv_dims[
                0] = env.num_input_channels
        else:
            assert (training_parameters.cnn_parameters is
                    None), "Extra CNN parameters for non-image input"
        trainer_params = ContinuousActionModelParameters(
            rl=rl_parameters,
            training=training_parameters,
            rainbow=rainbow_parameters)
        trainer = ParametricDQNTrainer(trainer_params, env.normalization,
                                       env.normalization_action, use_gpu)
    elif model_type == ModelType.CONTINUOUS_ACTION.value:
        training_parameters = params["shared_training"]
        if isinstance(training_parameters, dict):
            training_parameters = DDPGTrainingParameters(**training_parameters)

        actor_parameters = params["actor_training"]
        if isinstance(actor_parameters, dict):
            actor_parameters = DDPGNetworkParameters(**actor_parameters)

        critic_parameters = params["critic_training"]
        if isinstance(critic_parameters, dict):
            critic_parameters = DDPGNetworkParameters(**critic_parameters)

        trainer_params = DDPGModelParameters(
            rl=rl_parameters,
            shared_training=training_parameters,
            actor_training=actor_parameters,
            critic_training=critic_parameters,
        )

        action_range_low = env.action_space.low.astype(np.float32)
        action_range_high = env.action_space.high.astype(np.float32)

        trainer = DDPGTrainer(
            trainer_params,
            env.normalization,
            env.normalization_action,
            torch.from_numpy(action_range_low).unsqueeze(dim=0),
            torch.from_numpy(action_range_high).unsqueeze(dim=0),
            use_gpu,
        )

    elif model_type == ModelType.SOFT_ACTOR_CRITIC.value:
        trainer_params = SACModelParameters(
            rl=rl_parameters,
            training=SACTrainingParameters(
                minibatch_size=params["sac_training"]["minibatch_size"],
                use_2_q_functions=params["sac_training"]["use_2_q_functions"],
                q_network_optimizer=OptimizerParameters(
                    **params["sac_training"]["q_network_optimizer"]),
                value_network_optimizer=OptimizerParameters(
                    **params["sac_training"]["value_network_optimizer"]),
                actor_network_optimizer=OptimizerParameters(
                    **params["sac_training"]["actor_network_optimizer"]),
                entropy_temperature=params["sac_training"]
                ["entropy_temperature"],
            ),
            q_network=FeedForwardParameters(**params["sac_q_training"]),
            value_network=FeedForwardParameters(
                **params["sac_value_training"]),
            actor_network=FeedForwardParameters(
                **params["sac_actor_training"]),
        )
        trainer = get_sac_trainer(env, trainer_params, use_gpu)

    else:
        raise NotImplementedError(
            "Model of type {} not supported".format(model_type))

    return trainer
Example #4
0
def create_trainer(model_type, params, rl_parameters, use_gpu, env):
    if model_type == ModelType.PYTORCH_DISCRETE_DQN.value:
        training_parameters = params["training"]
        if isinstance(training_parameters, dict):
            training_parameters = TrainingParameters(**training_parameters)
        rainbow_parameters = params["rainbow"]
        if isinstance(rainbow_parameters, dict):
            rainbow_parameters = RainbowDQNParameters(**rainbow_parameters)
        if env.img:
            assert (
                training_parameters.cnn_parameters is not None
            ), "Missing CNN parameters for image input"
            if isinstance(training_parameters.cnn_parameters, dict):
                training_parameters.cnn_parameters = CNNParameters(
                    **training_parameters.cnn_parameters
                )
            training_parameters.cnn_parameters.conv_dims[0] = env.num_input_channels
            training_parameters.cnn_parameters.input_height = env.height
            training_parameters.cnn_parameters.input_width = env.width
            training_parameters.cnn_parameters.num_input_channels = (
                env.num_input_channels
            )
        else:
            assert (
                training_parameters.cnn_parameters is None
            ), "Extra CNN parameters for non-image input"
        trainer_params = DiscreteActionModelParameters(
            actions=env.actions,
            rl=rl_parameters,
            training=training_parameters,
            rainbow=rainbow_parameters,
        )
        trainer = create_dqn_trainer_from_params(
            trainer_params, env.normalization, use_gpu
        )

    elif model_type == ModelType.PYTORCH_PARAMETRIC_DQN.value:
        training_parameters = params["training"]
        if isinstance(training_parameters, dict):
            training_parameters = TrainingParameters(**training_parameters)
        rainbow_parameters = params["rainbow"]
        if isinstance(rainbow_parameters, dict):
            rainbow_parameters = RainbowDQNParameters(**rainbow_parameters)
        if env.img:
            assert (
                training_parameters.cnn_parameters is not None
            ), "Missing CNN parameters for image input"
            training_parameters.cnn_parameters.conv_dims[0] = env.num_input_channels
        else:
            assert (
                training_parameters.cnn_parameters is None
            ), "Extra CNN parameters for non-image input"
        trainer_params = ContinuousActionModelParameters(
            rl=rl_parameters, training=training_parameters, rainbow=rainbow_parameters
        )
        trainer = create_parametric_dqn_trainer_from_params(
            trainer_params, env.normalization, env.normalization_action, use_gpu
        )

    elif model_type == ModelType.TD3.value:
        trainer_params = TD3ModelParameters(
            rl=rl_parameters,
            training=TD3TrainingParameters(
                minibatch_size=params["td3_training"]["minibatch_size"],
                q_network_optimizer=OptimizerParameters(
                    **params["td3_training"]["q_network_optimizer"]
                ),
                actor_network_optimizer=OptimizerParameters(
                    **params["td3_training"]["actor_network_optimizer"]
                ),
                use_2_q_functions=params["td3_training"]["use_2_q_functions"],
                exploration_noise=params["td3_training"]["exploration_noise"],
                initial_exploration_ts=params["td3_training"]["initial_exploration_ts"],
                target_policy_smoothing=params["td3_training"][
                    "target_policy_smoothing"
                ],
                noise_clip=params["td3_training"]["noise_clip"],
                delayed_policy_update=params["td3_training"]["delayed_policy_update"],
            ),
            q_network=FeedForwardParameters(**params["td3_q_training"]),
            actor_network=FeedForwardParameters(**params["td3_actor_training"]),
        )
        trainer = get_td3_trainer(env, trainer_params, use_gpu)

    elif model_type == ModelType.SOFT_ACTOR_CRITIC.value:
        value_network = None
        value_network_optimizer = None
        alpha_optimizer = None
        if params["sac_training"]["use_value_network"]:
            value_network = FeedForwardParameters(**params["sac_value_training"])
            value_network_optimizer = OptimizerParameters(
                **params["sac_training"]["value_network_optimizer"]
            )
        if "alpha_optimizer" in params["sac_training"]:
            alpha_optimizer = OptimizerParameters(
                **params["sac_training"]["alpha_optimizer"]
            )
        entropy_temperature = params["sac_training"].get("entropy_temperature", None)
        target_entropy = params["sac_training"].get("target_entropy", None)

        trainer_params = SACModelParameters(
            rl=rl_parameters,
            training=SACTrainingParameters(
                minibatch_size=params["sac_training"]["minibatch_size"],
                use_2_q_functions=params["sac_training"]["use_2_q_functions"],
                use_value_network=params["sac_training"]["use_value_network"],
                q_network_optimizer=OptimizerParameters(
                    **params["sac_training"]["q_network_optimizer"]
                ),
                value_network_optimizer=value_network_optimizer,
                actor_network_optimizer=OptimizerParameters(
                    **params["sac_training"]["actor_network_optimizer"]
                ),
                entropy_temperature=entropy_temperature,
                target_entropy=target_entropy,
                alpha_optimizer=alpha_optimizer,
            ),
            q_network=FeedForwardParameters(**params["sac_q_training"]),
            value_network=value_network,
            actor_network=FeedForwardParameters(**params["sac_actor_training"]),
        )
        trainer = get_sac_trainer(env, trainer_params, use_gpu)

    else:
        raise NotImplementedError("Model of type {} not supported".format(model_type))

    return trainer
Example #5
0
def create_park_trainer(model_type, params, rl_parameters, use_gpu, env):
    if model_type == ModelType.PYTORCH_DISCRETE_DQN.value:
        training_parameters = params["training"]
        if isinstance(training_parameters, dict):
            training_parameters = TrainingParameters(**training_parameters)
        rainbow_parameters = params["rainbow"]
        if isinstance(rainbow_parameters, dict):
            rainbow_parameters = RainbowDQNParameters(**rainbow_parameters)
        if env.img:
            assert (training_parameters.cnn_parameters
                    is not None), "Missing CNN parameters for image input"
            if isinstance(training_parameters.cnn_parameters, dict):
                training_parameters.cnn_parameters = CNNParameters(
                    **training_parameters.cnn_parameters)
            training_parameters.cnn_parameters.conv_dims[
                0] = env.num_input_channels
            training_parameters.cnn_parameters.input_height = env.height
            training_parameters.cnn_parameters.input_width = env.width
            training_parameters.cnn_parameters.num_input_channels = (
                env.num_input_channels)
        else:
            assert (training_parameters.cnn_parameters is
                    None), "Extra CNN parameters for non-image input"
        trainer_params = DiscreteActionModelParameters(
            actions=env.actions,
            rl=rl_parameters,
            training=training_parameters,
            rainbow=rainbow_parameters,
        )
        trainer = create_park_dqn_trainer_from_params(
            model=trainer_params,
            normalization_parameters=env.normalization,
            use_gpu=use_gpu,
            env=env.env)
    elif model_type == ModelType.PYTORCH_PARAMETRIC_DQN.value:
        training_parameters = params["training"]
        if isinstance(training_parameters, dict):
            training_parameters = TrainingParameters(**training_parameters)
        rainbow_parameters = params["rainbow"]
        if isinstance(rainbow_parameters, dict):
            rainbow_parameters = RainbowDQNParameters(**rainbow_parameters)
        if env.img:
            assert (training_parameters.cnn_parameters
                    is not None), "Missing CNN parameters for image input"
            training_parameters.cnn_parameters.conv_dims[
                0] = env.num_input_channels
        else:
            assert (training_parameters.cnn_parameters is
                    None), "Extra CNN parameters for non-image input"
        trainer_params = ContinuousActionModelParameters(
            rl=rl_parameters,
            training=training_parameters,
            rainbow=rainbow_parameters)
        trainer = create_parametric_dqn_trainer_from_params(
            trainer_params,
            env.normalization,
            env.normalization_action,
            use_gpu,
            env=env.env)
    elif model_type == ModelType.CONTINUOUS_ACTION.value:
        training_parameters = params["shared_training"]
        if isinstance(training_parameters, dict):
            training_parameters = DDPGTrainingParameters(**training_parameters)

        actor_parameters = params["actor_training"]
        if isinstance(actor_parameters, dict):
            actor_parameters = DDPGNetworkParameters(**actor_parameters)

        critic_parameters = params["critic_training"]
        if isinstance(critic_parameters, dict):
            critic_parameters = DDPGNetworkParameters(**critic_parameters)

        trainer_params = DDPGModelParameters(
            rl=rl_parameters,
            shared_training=training_parameters,
            actor_training=actor_parameters,
            critic_training=critic_parameters,
        )

        action_range_low = env.action_space.low.astype(np.float32)
        action_range_high = env.action_space.high.astype(np.float32)

        state_dim = get_num_output_features(env.normalization)
        action_dim = get_num_output_features(env.normalization_action)

        # Build Actor Network
        actor_network = ActorNetModel(
            layers=([state_dim] + trainer_params.actor_training.layers[1:-1] +
                    [action_dim]),
            activations=trainer_params.actor_training.activations,
            fl_init=trainer_params.shared_training.final_layer_init,
            state_dim=state_dim,
            action_dim=action_dim,
            use_gpu=use_gpu,
            use_all_avail_gpus=False,
        )

        # Build Critic Network
        critic_network = CriticNetModel(
            # Ensure dims match input state and scalar output
            layers=[state_dim] + \
            trainer_params.critic_training.layers[1:-1] + [1],
            activations=trainer_params.critic_training.activations,
            fl_init=trainer_params.shared_training.final_layer_init,
            state_dim=state_dim,
            action_dim=action_dim,
            use_gpu=use_gpu,
            use_all_avail_gpus=False,
        )

        trainer = DDPGTrainer(
            actor_network,
            critic_network,
            trainer_params,
            env.normalization,
            env.normalization_action,
            torch.from_numpy(action_range_low).unsqueeze(dim=0),
            torch.from_numpy(action_range_high).unsqueeze(dim=0),
            use_gpu,
        )

    elif model_type == ModelType.SOFT_ACTOR_CRITIC.value:
        value_network = None
        value_network_optimizer = None
        if params["sac_training"]["use_value_network"]:
            value_network = FeedForwardParameters(
                **params["sac_value_training"])
            value_network_optimizer = OptimizerParameters(
                **params["sac_training"]["value_network_optimizer"])

        trainer_params = SACModelParameters(
            rl=rl_parameters,
            training=SACTrainingParameters(
                minibatch_size=params["sac_training"]["minibatch_size"],
                use_2_q_functions=params["sac_training"]["use_2_q_functions"],
                use_value_network=params["sac_training"]["use_value_network"],
                q_network_optimizer=OptimizerParameters(
                    **params["sac_training"]["q_network_optimizer"]),
                value_network_optimizer=value_network_optimizer,
                actor_network_optimizer=OptimizerParameters(
                    **params["sac_training"]["actor_network_optimizer"]),
                entropy_temperature=params["sac_training"]
                ["entropy_temperature"],
            ),
            q_network=FeedForwardParameters(**params["sac_q_training"]),
            value_network=value_network,
            actor_network=FeedForwardParameters(
                **params["sac_actor_training"]),
        )
        trainer = horizon_runner.get_sac_trainer(env, trainer_params, use_gpu)

    else:
        raise NotImplementedError(
            "Model of type {} not supported".format(model_type))

    return trainer