def test_minibatches_per_step(self):
        _epochs = self.epochs
        self.epochs = 2
        rl_parameters = RLParameters(gamma=0.95,
                                     target_update_rate=0.9,
                                     maxq_learning=True)
        rainbow_parameters = RainbowDQNParameters(double_q_learning=True,
                                                  dueling_architecture=False)
        training_parameters1 = TrainingParameters(
            layers=self.layers,
            activations=self.activations,
            minibatch_size=1024,
            minibatches_per_step=1,
            learning_rate=0.25,
            optimizer="ADAM",
        )
        training_parameters2 = TrainingParameters(
            layers=self.layers,
            activations=self.activations,
            minibatch_size=128,
            minibatches_per_step=8,
            learning_rate=0.25,
            optimizer="ADAM",
        )
        env1 = Env(self.state_dims, self.action_dims)
        env2 = Env(self.state_dims, self.action_dims)
        model_parameters1 = DiscreteActionModelParameters(
            actions=env1.actions,
            rl=rl_parameters,
            rainbow=rainbow_parameters,
            training=training_parameters1,
        )
        model_parameters2 = DiscreteActionModelParameters(
            actions=env2.actions,
            rl=rl_parameters,
            rainbow=rainbow_parameters,
            training=training_parameters2,
        )
        # minibatch_size / 8, minibatches_per_step * 8 should give the same result
        logger.info("Training model 1")
        trainer1 = self._train(model_parameters1, env1)
        SummaryWriterContext._reset_globals()
        logger.info("Training model 2")
        trainer2 = self._train(model_parameters2, env2)

        weight1 = trainer1.q_network.fc.layers[-1].weight.detach().numpy()
        weight2 = trainer2.q_network.fc.layers[-1].weight.detach().numpy()

        # Due to numerical stability this tolerance has to be fairly high
        self.assertTrue(np.allclose(weight1, weight2, rtol=0.0, atol=1e-3))
        self.epochs = _epochs
Example #2
0
 def get_sarsa_parameters_factorized(self):
     return ContinuousActionModelParameters(
         rl=RLParameters(
             gamma=DISCOUNT,
             target_update_rate=1.0,
             reward_burnin=100,
             maxq_learning=False,
         ),
         training=TrainingParameters(
             layers=[],
             activations=[],
             factorization_parameters=FactorizationParameters(
                 state=FeedForwardParameters(
                     layers=[-1, 128, 64, 32],
                     activations=["relu", "relu", "linear"]),
                 action=FeedForwardParameters(
                     layers=[-1, 128, 64, 32],
                     activations=["relu", "relu", "linear"]),
             ),
             minibatch_size=self.minibatch_size,
             learning_rate=0.05,
             optimizer="ADAM",
         ),
         knn=KnnParameters(model_type="DQN"),
         in_training_cpe_evaluation=InTrainingCPEParameters(
             mdp_sampled_rate=0.1),
     )
Example #3
0
    def test_input_validation(self):
        with self.assertRaises(Exception):
            # layers and activations sizes incompatible
            MLTrainer(
                "Test model",
                TrainingParameters([2, 1], ['linear', 'relu'], 100, 0.001,
                                   'ADAM'))

        with self.assertRaises(Exception):
            # All values in layers should be positive integers
            MLTrainer(
                "Test model",
                TrainingParameters([-1, 1], ['linear'], 100, 0.001, 'ADAM'))
            MLTrainer(
                "Test model",
                TrainingParameters([1.3, 1], ['linear'], 100, 0.001, 'ADAM'))
Example #4
0
    def test_trainer_maxq(self):
        env = Env(self.state_dims, self.action_dims)
        env.seed(42)
        maxq_parameters = DiscreteActionModelParameters(
            actions=env.actions,
            rl=RLParameters(
                gamma=0.99,
                target_update_rate=1.0,
                reward_burnin=100,
                maxq_learning=True,
            ),
            training=TrainingParameters(
                layers=self.layers,
                activations=self.activations,
                minibatch_size=self.minibatch_size,
                learning_rate=1.0,
                optimizer="ADAM",
            ),
        )
        maxq_trainer = DiscreteActionTrainer(maxq_parameters,
                                             env.normalization)
        # predictor = maxq_trainer.predictor()

        logger.info("Generating constant_reward MDPs..")

        states, actions, rewards, next_states, next_actions, is_terminal, possible_next_actions = env.generate_samples_discrete(
            self.num_samples)

        logger.info("Preprocessing constant_reward MDPs..")

        tdps = env.preprocess_samples_discrete(
            states,
            actions,
            rewards,
            next_states,
            next_actions,
            is_terminal,
            possible_next_actions,
            self.minibatch_size,
        )

        for epoch in range(self.epochs):
            logger.info("Training.. " + str(epoch))
            for tdp in tdps:
                maxq_trainer.train_numpy(tdp, None)
            logger.info(" ".join([
                "Training epoch",
                str(epoch),
                "average q values",
                str(np.mean(workspace.FetchBlob(maxq_trainer.q_score_output))),
                "td_loss",
                str(workspace.FetchBlob(maxq_trainer.loss_blob)),
            ]))

        # Q value should converge to very close to 100
        avg_q_value_after_training = np.mean(
            workspace.FetchBlob(maxq_trainer.q_score_output))

        self.assertLess(avg_q_value_after_training, 101)
        self.assertGreater(avg_q_value_after_training, 99)
 def get_sarsa_trainer_reward_boost(
     self,
     environment,
     reward_shape,
     dueling,
     use_gpu=False,
     use_all_avail_gpus=False,
 ):
     rl_parameters = RLParameters(
         gamma=DISCOUNT,
         target_update_rate=1.0,
         reward_burnin=10,
         maxq_learning=False,
         reward_boost=reward_shape,
     )
     training_parameters = TrainingParameters(
         layers=[-1, 128, -1] if dueling else [-1, -1],
         activations=["relu", "linear"] if dueling else ["linear"],
         minibatch_size=self.minibatch_size,
         learning_rate=0.05,
         optimizer="ADAM",
     )
     return DQNTrainer(
         DiscreteActionModelParameters(
             actions=environment.ACTIONS,
             rl=rl_parameters,
             training=training_parameters,
             rainbow=RainbowDQNParameters(
                 double_q_learning=True, dueling_architecture=dueling
             ),
         ),
         environment.normalization,
         use_gpu=use_gpu,
         use_all_avail_gpus=use_all_avail_gpus,
     )
Example #6
0
 def get_sarsa_parameters(self, environment, reward_shape, dueling,
                          categorical, clip_grad_norm):
     rl_parameters = RLParameters(
         gamma=DISCOUNT,
         target_update_rate=1.0,
         maxq_learning=False,
         reward_boost=reward_shape,
     )
     training_parameters = TrainingParameters(
         layers=[-1, 128, -1] if dueling else [-1, -1],
         activations=["relu", "linear"] if dueling else ["linear"],
         minibatch_size=self.minibatch_size,
         learning_rate=0.05,
         optimizer="ADAM",
         clip_grad_norm=clip_grad_norm,
     )
     return DiscreteActionModelParameters(
         actions=environment.ACTIONS,
         rl=rl_parameters,
         training=training_parameters,
         rainbow=RainbowDQNParameters(
             double_q_learning=True,
             dueling_architecture=dueling,
             categorical=categorical,
         ),
     )
Example #7
0
 def get_sarsa_trainer_reward_boost(self, environment, reward_shape):
     rl_parameters = RLParameters(
         gamma=DISCOUNT,
         target_update_rate=1.0,
         reward_burnin=10,
         maxq_learning=False,
         reward_boost=reward_shape,
     )
     training_parameters = TrainingParameters(
         layers=[-1, -1],
         activations=["linear"],
         minibatch_size=self.minibatch_size,
         learning_rate=0.125,
         optimizer="ADAM",
     )
     return DiscreteActionTrainer(
         DiscreteActionModelParameters(
             actions=environment.ACTIONS,
             rl=rl_parameters,
             training=training_parameters,
             rainbow=RainbowDQNParameters(double_q_learning=True,
                                          dueling_architecture=False),
             in_training_cpe=InTrainingCPEParameters(mdp_sampled_rate=0.1),
         ),
         environment.normalization,
     )
Example #8
0
 def get_sarsa_parameters_factorized(self):
     return ContinuousActionModelParameters(
         rl=RLParameters(
             gamma=DISCOUNT,
             target_update_rate=1.0,
             reward_burnin=100,
             maxq_learning=False,
         ),
         training=TrainingParameters(
             # These are used by reward network
             layers=[-1, 256, 128, -1],
             activations=["relu", "relu", "linear"],
             factorization_parameters=FactorizationParameters(
                 state=FeedForwardParameters(layers=[-1, 128, 64],
                                             activations=["relu",
                                                          "linear"]),
                 action=FeedForwardParameters(
                     layers=[-1, 128, 64], activations=["relu", "linear"]),
             ),
             minibatch_size=self.minibatch_size,
             learning_rate=0.03,
             optimizer="ADAM",
         ),
         rainbow=RainbowDQNParameters(double_q_learning=True,
                                      dueling_architecture=False),
         in_training_cpe=InTrainingCPEParameters(mdp_sampled_rate=0.1),
     )
Example #9
0
    def test_trainer_maxq(self):
        env = Env(self.state_dims, self.action_dims)
        env.seed(42)
        maxq_parameters = DiscreteActionModelParameters(
            actions=env.actions,
            rl=RLParameters(
                gamma=0.99,
                target_update_rate=0.9,
                reward_burnin=100,
                maxq_learning=True,
            ),
            rainbow=RainbowDQNParameters(double_q_learning=True,
                                         dueling_architecture=False),
            training=TrainingParameters(
                layers=self.layers,
                activations=self.activations,
                minibatch_size=self.minibatch_size,
                learning_rate=0.25,
                optimizer="ADAM",
            ),
        )
        maxq_trainer = DQNTrainer(maxq_parameters, env.normalization)

        logger.info("Generating constant_reward MDPs..")

        states, actions, rewards, next_states, next_actions, is_terminal, possible_actions, possible_next_actions = env.generate_samples_discrete(
            self.num_samples)

        logger.info("Preprocessing constant_reward MDPs..")

        for epoch in range(self.epochs):
            tdps = env.preprocess_samples_discrete(
                states,
                actions,
                rewards,
                next_states,
                next_actions,
                is_terminal,
                possible_actions,
                possible_next_actions,
                self.minibatch_size,
            )
            logger.info("Training.. " + str(epoch))
            for tdp in tdps:
                maxq_trainer.train(tdp)
            logger.info(" ".join([
                "Training epoch",
                str(epoch),
                "average q values",
                str(torch.mean(maxq_trainer.all_action_scores)),
            ]))

        # Q value should converge to very close to 100
        avg_q_value_after_training = torch.mean(maxq_trainer.all_action_scores)

        self.assertLess(avg_q_value_after_training, 101)
        self.assertGreater(avg_q_value_after_training, 99)
Example #10
0
def main(params):
    # Set minibatch size based on # of devices being used to train
    params["training"]["minibatch_size"] *= minibatch_size_multiplier(
        params["use_gpu"], params["use_all_avail_gpus"])

    rl_parameters = RLParameters(**params["rl"])
    training_parameters = TrainingParameters(**params["training"])
    rainbow_parameters = RainbowDQNParameters(**params["rainbow"])

    model_params = ContinuousActionModelParameters(
        rl=rl_parameters,
        training=training_parameters,
        rainbow=rainbow_parameters)
    state_normalization = BaseWorkflow.read_norm_file(
        params["state_norm_data_path"])
    action_normalization = BaseWorkflow.read_norm_file(
        params["action_norm_data_path"])

    writer = SummaryWriter(log_dir=params["model_output_path"])
    logger.info("TensorBoard logging location is: {}".format(writer.log_dir))

    preprocess_handler = ParametricDqnPreprocessHandler(
        Preprocessor(state_normalization, False),
        Preprocessor(action_normalization, False),
        PandasSparseToDenseProcessor(),
    )

    workflow = ParametricDqnWorkflow(
        model_params,
        preprocess_handler,
        state_normalization,
        action_normalization,
        params["use_gpu"],
        params["use_all_avail_gpus"],
    )

    train_dataset = JSONDatasetReader(
        params["training_data_path"],
        batch_size=training_parameters.minibatch_size)
    eval_dataset = JSONDatasetReader(params["eval_data_path"], batch_size=16)

    with summary_writer_context(writer):
        workflow.train_network(train_dataset, eval_dataset,
                               int(params["epochs"]))

    exporter = ParametricDQNExporter(
        workflow.trainer.q_network,
        PredictorFeatureExtractor(
            state_normalization_parameters=state_normalization,
            action_normalization_parameters=action_normalization,
        ),
        ParametricActionOutputTransformer(),
    )
    return export_trainer_and_predictor(workflow.trainer,
                                        params["model_output_path"],
                                        exporter=exporter)  # noqa
Example #11
0
    def test_pure_q_learning_all_cheat(self):
        q_learning_parameters = DiscreteActionModelParameters(
            actions=self._env.ACTIONS,
            rl=self._rl_parameters_all_cheat_maxq,
            training=TrainingParameters(
                layers=[self._env.width * self._env.height, 1],
                activations=['linear'],
                minibatch_size=self.minibatch_size,
                learning_rate=0.05,
                optimizer='SGD',
                lr_policy='fixed',
            )
        )

        trainer = DiscreteActionTrainer(
            q_learning_parameters,
            self._env.normalization,
        )

        predictor = trainer.predictor()

        policy = _build_policy(self._env, predictor, 1)
        initial_state = self._env.reset()
        iteration_result = _collect_samples(
            self._env, policy, 20000, initial_state
        )
        num_iterations = 50
        for _ in range(num_iterations):
            tdps = self._env.preprocess_samples(
                iteration_result.states,
                iteration_result.actions,
                iteration_result.rewards,
                iteration_result.next_states,
                iteration_result.next_actions,
                iteration_result.is_terminals,
                iteration_result.possible_next_actions,
                None,
                self.minibatch_size,
            )
            for tdp in tdps:
                trainer.train_numpy(tdp, None)
            initial_state = self._env.reset()
            policy = _build_policy(self._env, predictor, 0.1)
            iteration_result = _collect_samples(
                self._env, policy, 20000, initial_state
            )
        policy = _build_policy(self._env, predictor, 0)
        initial_state = self._env.reset()
        iteration_result = _collect_samples(
            self._env, policy, 1000, initial_state
        )
        # 100% should be cheat.  Will fix in the future.
        self.assertGreater(
            np.sum(np.array(iteration_result.actions) == 'C'), 800
        )
Example #12
0
    def test_trainer_maxq(self):
        environment = Gridworld()
        maxq_sarsa_parameters = DiscreteActionModelParameters(
            actions=environment.ACTIONS,
            rl=RLParameters(
                gamma=DISCOUNT,
                target_update_rate=0.5,
                reward_burnin=10,
                maxq_learning=True,
            ),
            training=TrainingParameters(
                layers=[-1, 1],
                activations=["linear"],
                minibatch_size=self.minibatch_size,
                learning_rate=0.01,
                optimizer="ADAM",
            ),
        )
        # construct the new trainer that using maxq
        maxq_trainer = DiscreteActionTrainer(
            maxq_sarsa_parameters, environment.normalization
        )

        samples = environment.generate_samples(100000, 1.0)
        predictor = maxq_trainer.predictor()
        tdps = environment.preprocess_samples(samples, self.minibatch_size)
        evaluator = GridworldEvaluator(environment, True)

        evaluator.evaluate(predictor)
        print(
            "Pre-Training eval: ",
            evaluator.mc_loss[-1],
            evaluator.reward_doubly_robust[-1],
        )
        self.assertGreater(evaluator.mc_loss[-1], 0.3)

        for _ in range(5):
            for tdp in tdps:
                maxq_trainer.train_numpy(tdp, None)

        evaluator.evaluate(predictor)
        print(
            "Post-Training eval: ",
            evaluator.mc_loss[-1],
            evaluator.reward_doubly_robust[-1],
        )
        self.assertLess(evaluator.mc_loss[-1], 0.1)

        self.assertGreater(
            evaluator.reward_doubly_robust[-1], evaluator.reward_doubly_robust[-2]
        )
 def get_sarsa_parameters(self):
     return ContinuousActionModelParameters(
         rl=RLParameters(gamma=DISCOUNT,
                         target_update_rate=1.0,
                         maxq_learning=False),
         training=TrainingParameters(
             layers=[-1, 256, 128, -1],
             activations=["relu", "relu", "linear"],
             minibatch_size=self.minibatch_size,
             learning_rate=0.05,
             optimizer="ADAM",
         ),
         rainbow=RainbowDQNParameters(double_q_learning=True,
                                      dueling_architecture=False),
     )
 def get_sarsa_parameters(self):
     return ContinuousActionModelParameters(
         rl=RLParameters(
             gamma=DISCOUNT,
             target_update_rate=0.5,
             reward_burnin=10,
             maxq_learning=False,
         ),
         training=TrainingParameters(
             layers=[-1, 200, 1],
             activations=['linear', 'linear'],
             minibatch_size=1024,
             learning_rate=0.01,
             optimizer='ADAM',
         ),
         knn=KnnParameters(model_type='DQN', ))
Example #15
0
 def get_sarsa_parameters(self):
     return ContinuousActionModelParameters(
         rl=RLParameters(
             gamma=DISCOUNT,
             target_update_rate=1.0,
             reward_burnin=100,
             maxq_learning=False,
         ),
         training=TrainingParameters(
             layers=[-1, 256, 128, -1],
             activations=["relu", "relu", "linear"],
             minibatch_size=self.minibatch_size,
             learning_rate=0.1,
             optimizer="ADAM",
         ),
         knn=KnnParameters(model_type="DQN"),
     )
Example #16
0
 def get_sarsa_trainer(self, environment):
     rl_parameters = RLParameters(gamma=DISCOUNT,
                                  target_update_rate=0.5,
                                  reward_burnin=10,
                                  maxq_learning=False)
     training_parameters = TrainingParameters(
         layers=[-1, 1],
         activations=['linear'],
         minibatch_size=1024,
         learning_rate=0.01,
         optimizer='ADAM',
     )
     return DiscreteActionTrainer(
         environment.normalization,
         DiscreteActionModelParameters(actions=environment.ACTIONS,
                                       rl=rl_parameters,
                                       training=training_parameters))
Example #17
0
def train_network(params):
    logger.info("Running DQN workflow with params:")
    logger.info(params)

    action_names = np.array(params["actions"])
    rl_parameters = RLParameters(**params["rl"])
    training_parameters = TrainingParameters(**params["training"])
    rainbow_parameters = RainbowDQNParameters(**params["rainbow"])

    trainer_params = DiscreteActionModelParameters(
        actions=params["actions"],
        rl=rl_parameters,
        training=training_parameters,
        rainbow=rainbow_parameters,
    )

    dataset = JSONDataset(params["training_data_path"],
                          batch_size=training_parameters.minibatch_size)
    norm_data = JSONDataset(params["state_norm_data_path"])
    state_normalization = read_norm_params(norm_data.read_all())

    num_batches = int(len(dataset) / training_parameters.minibatch_size)

    logger.info("Read in batch data set {} of size {} examples. Data split "
                "into {} batches of size {}.".format(
                    params["training_data_path"],
                    len(dataset),
                    num_batches,
                    training_parameters.minibatch_size,
                ))

    trainer = DQNTrainer(trainer_params, state_normalization,
                         params["use_gpu"])

    for epoch in range(params["epochs"]):
        for batch_idx in range(num_batches):
            helpers.report_training_status(batch_idx, num_batches, epoch,
                                           params["epochs"])
            batch = dataset.read_batch(batch_idx)
            tdp = preprocess_batch_for_training(action_names, batch,
                                                state_normalization)
            trainer.train(tdp)

    logger.info("Training finished. Saving PyTorch model to {}".format(
        params["pytorch_output_path"]))
    helpers.save_model_to_file(trainer, params["pytorch_output_path"])
Example #18
0
    def test_adam_weights(self):
        num_features = 4
        num_outputs = 1

        trainer = MLTrainer(
            "Linear Regression",
            TrainingParameters(layers=[num_features, num_outputs],
                               activations=['linear'],
                               minibatch_size=100,
                               learning_rate=0.1,
                               optimizer='ADAM'))

        dist = get_weight_dist(trainer,
                               num_features=num_features,
                               num_outputs=num_outputs)

        self.assertLess(dist, 0.1)
Example #19
0
    def test_trainer_maxq(self):
        environment = Gridworld()
        maxq_sarsa_parameters = DiscreteActionModelParameters(
            actions=environment.ACTIONS,
            rl=RLParameters(gamma=DISCOUNT,
                            target_update_rate=0.5,
                            reward_burnin=10,
                            maxq_learning=True),
            training=TrainingParameters(
                layers=[-1, 1],
                activations=['linear'],
                minibatch_size=self.minibatch_size,
                learning_rate=0.01,
                optimizer='ADAM',
            ))
        # construct the new trainer that using maxq
        maxq_trainer = DiscreteActionTrainer(
            maxq_sarsa_parameters,
            environment.normalization,
        )
        states, actions, rewards, next_states, next_actions, is_terminal,\
            possible_next_actions, reward_timelines = \
            environment.generate_samples(100000, 1.0)
        predictor = maxq_trainer.predictor()
        tdps = environment.preprocess_samples(
            states,
            actions,
            rewards,
            next_states,
            next_actions,
            is_terminal,
            possible_next_actions,
            reward_timelines,
            self.minibatch_size,
        )
        evaluator = GridworldEvaluator(environment, True)
        print("Pre-Training eval", evaluator.evaluate(predictor))
        self.assertGreater(evaluator.evaluate(predictor), 0.3)

        for _ in range(2):
            for tdp in tdps:
                maxq_trainer.stream_tdp(tdp, None)
            evaluator.evaluate(predictor)

        print("Post-Training eval", evaluator.evaluate(predictor))
        self.assertLess(evaluator.evaluate(predictor), 0.1)
Example #20
0
 def test_sarsa_layer_validation(self):
     env = Gridworld()
     invalid_sarsa_params = DiscreteActionModelParameters(
         actions=env.ACTIONS,
         rl=RLParameters(gamma=DISCOUNT,
                         target_update_rate=0.5,
                         reward_burnin=10,
                         maxq_learning=False),
         training=TrainingParameters(
             layers=[-1, 3],
             activations=['linear'],
             minibatch_size=32,
             learning_rate=0.1,
             optimizer='SGD',
         ))
     with self.assertRaises(Exception):
         # layers[-1] should be 1
         DiscreteActionTrainer(env.normalization, invalid_sarsa_params)
Example #21
0
def main(args):
    parser = argparse.ArgumentParser(
        description="Train a RL net to play in an OpenAI Gym environment.")
    parser.add_argument("-p",
                        "--parameters",
                        help="Path to JSON parameters file.")
    parser.add_argument("-s",
                        "--score-bar",
                        help="Bar for averaged tests scores.",
                        type=float,
                        default=None)
    parser.add_argument(
        "-g",
        "--gpu_id",
        help="If set, will use GPU with specified ID. Otherwise will use CPU.",
        default=USE_CPU)
    args = parser.parse_args(args)
    with open(args.parameters, 'r') as f:
        params = json.load(f)

    rl_settings = params['rl']
    training_settings = params['training']
    rl_settings['gamma'] = rl_settings['reward_discount_factor']
    del rl_settings['reward_discount_factor']
    training_settings['gamma'] = training_settings['learning_rate_decay']
    del training_settings['learning_rate_decay']

    env_type = params['env']
    env = OpenAIGymEnvironment(env_type, rl_settings['epsilon'])

    trainer_params = DiscreteActionModelParameters(
        actions=env.actions,
        rl=RLParameters(**rl_settings),
        training=TrainingParameters(**training_settings))

    device = core.DeviceOption(
        caffe2_pb2.CPU if args.gpu_id == USE_CPU else caffe2_pb2.CUDA,
        args.gpu_id)
    with core.DeviceScope(device):
        trainer = DiscreteActionTrainer(env.normalization,
                                        trainer_params,
                                        skip_normalization=True)
        return run(env, trainer, "{} test run".format(env_type),
                   args.score_bar, **params["run_details"])
Example #22
0
    def test_sgd_weights(self):
        num_features = 4
        num_outputs = 1

        trainer = MLTrainer(
            "Linear Regression",
            TrainingParameters(layers=[num_features, num_outputs],
                               activations=['linear'],
                               minibatch_size=100,
                               learning_rate=0.001,
                               optimizer='SGD',
                               gamma=0.9999,
                               lr_policy='step'))

        dist = get_weight_dist(trainer,
                               num_features=num_features,
                               num_outputs=num_outputs)

        self.assertLess(dist, 0.1)
Example #23
0
 def get_sarsa_parameters(self):
     return ContinuousActionModelParameters(
         rl=RLParameters(
             gamma=DISCOUNT,
             target_update_rate=1.0,
             reward_burnin=100,
             maxq_learning=False,
         ),
         training=TrainingParameters(
             layers=[-1, 256, 128, -1],
             activations=["relu", "relu", "linear"],
             minibatch_size=self.minibatch_size,
             learning_rate=0.05,
             optimizer="ADAM",
         ),
         knn=KnnParameters(model_type="DQN"),
         rainbow=RainbowDQNParameters(double_q_learning=True,
                                      dueling_architecture=False),
         in_training_cpe=InTrainingCPEParameters(mdp_sampled_rate=0.1),
     )
    def test_pure_q_learning_all_cheat(self):
        q_learning_parameters = DiscreteActionModelParameters(
            actions=self._env.ACTIONS,
            rl=self._rl_parameters_all_cheat_maxq,
            training=TrainingParameters(
                layers=[self._env.width * self._env.height, 1],
                activations=['linear'],
                minibatch_size=32,
                learning_rate=0.05,
                optimizer='SGD',
                lr_policy='fixed'))

        trainer = DiscreteActionTrainer(self._env.normalization,
                                        q_learning_parameters)

        predictor = trainer.predictor()

        policy = _build_policy(self._env, predictor, 1)
        initial_state = self._env.reset()
        iteration_result = _collect_samples(self._env, policy, 10000,
                                            initial_state)
        num_iterations = 50
        for _ in range(num_iterations):
            policy = _build_policy(self._env, predictor, 0)

            tdp = self._env.preprocess_samples(
                iteration_result.states,
                iteration_result.actions,
                iteration_result.rewards,
                iteration_result.next_states,
                iteration_result.next_actions,
                iteration_result.is_terminals,
                iteration_result.possible_next_actions,
                None,
            )
            trainer.stream_tdp(tdp, None)
            initial_state = iteration_result.current_state
        initial_state = self._env.reset()
        iteration_result = _collect_samples(self._env, policy, 10000,
                                            initial_state)
        self.assertTrue(np.all(np.array(iteration_result.actions) == 'C'))
Example #25
0
    def test_scaledoutput_regression_weights(self):
        # this is testing if scaled/inner-product in final layer,
        #  using same case but transformed to (wx+b) * (1/y) = 1,
        #  in this test case, learned weight should be regularized on columns
        num_features = 4
        num_training_samples = 100
        num_outputs = 2

        training_inputs, training_outputs, weights, _ = (gen_training_data(
            num_features, num_training_samples, num_outputs, 0.01))

        trainer = MLTrainerIP("Linear Regression",
                              TrainingParameters(
                                  layers=[num_features, num_outputs],
                                  activations=['linear'],
                                  minibatch_size=100,
                                  learning_rate=0.1),
                              scaled_output=True)

        training_labels = np.ones(
            (training_inputs.shape[0], 1)).astype(np.float32)
        training_scale = np.where(training_outputs == 0, 0,
                                  1.0 / (num_outputs * training_outputs))

        for _ in range(10000):
            trainer.train_wexternal(training_inputs, training_labels,
                                    training_scale)

        trained_weights = np.concatenate(
            [workspace.FetchBlob(w) for w in trainer.weights],
            axis=0).transpose()

        # regularized after training to keep same scale as given weights
        scale_trained_weights = np.copy(trained_weights)
        for i in range(trained_weights.shape[1]):
            scaling = 1.0 / trained_weights[0, i] * weights[0, i]
            scale_trained_weights[:, i] = trained_weights[:, i] * scaling

        dist = np.linalg.norm(scale_trained_weights - weights)
        self.assertLess(dist, 0.1)
    def test_trainer_maxq(self):
        env = Env(self.state_dims, self.action_dims)
        maxq_parameters = DiscreteActionModelParameters(
            actions=env.actions,
            rl=RLParameters(gamma=0.95,
                            target_update_rate=0.9,
                            maxq_learning=True),
            rainbow=RainbowDQNParameters(double_q_learning=True,
                                         dueling_architecture=False),
            training=TrainingParameters(
                layers=self.layers,
                activations=self.activations,
                minibatch_size=1024,
                learning_rate=0.25,
                optimizer="ADAM",
            ),
        )

        # Q value should converge to very close to 20
        trainer = self._train(maxq_parameters, env)
        avg_q_value_after_training = torch.mean(trainer.all_action_scores)
        self.assertLess(avg_q_value_after_training, 22)
        self.assertGreater(avg_q_value_after_training, 18)
Example #27
0
 def get_sarsa_trainer_reward_boost(self, environment, reward_shape):
     rl_parameters = RLParameters(
         gamma=DISCOUNT,
         target_update_rate=0.5,
         reward_burnin=10,
         maxq_learning=False,
         reward_boost=reward_shape,
     )
     training_parameters = TrainingParameters(
         layers=[-1, -1],
         activations=["linear"],
         minibatch_size=self.minibatch_size,
         learning_rate=0.01,
         optimizer="ADAM",
     )
     return DiscreteActionTrainer(
         DiscreteActionModelParameters(
             actions=environment.ACTIONS,
             rl=rl_parameters,
             training=training_parameters,
         ),
         environment.normalization,
     )
Example #28
0
def run_gym(params, score_bar, gpu_id):
    rl_settings = params['rl']
    training_settings = params['training']
    rl_settings['gamma'] = rl_settings['reward_discount_factor']
    del rl_settings['reward_discount_factor']
    training_settings['gamma'] = training_settings['learning_rate_decay']
    del training_settings['learning_rate_decay']

    env_type = params['env']
    env = OpenAIGymEnvironment(env_type, rl_settings['epsilon'])
    trainer_params = DiscreteActionModelParameters(
        actions=env.actions,
        rl=RLParameters(**rl_settings),
        training=TrainingParameters(**training_settings))

    device = core.DeviceOption(
        caffe2_pb2.CPU if gpu_id == USE_CPU else caffe2_pb2.CUDA,
        gpu_id,
    )
    with core.DeviceScope(device):
        if env.img:
            trainer = DiscreteActionConvTrainer(
                DiscreteActionConvModelParameters(
                    fc_parameters=trainer_params,
                    cnn_parameters=CNNModelParameters(**params['cnn']),
                    num_input_channels=env.num_input_channels,
                    img_height=env.height,
                    img_width=env.width),
                env.normalization,
            )
        else:
            trainer = DiscreteActionTrainer(
                trainer_params,
                env.normalization,
            )
        return run(env, trainer, "{} test run".format(env_type), score_bar,
                   **params["run_details"])
    def setUp(self):
        super(self.__class__, self).setUp()
        np.random.seed(0)
        random.seed(0)

        self.state_dim, self.action_dim = 2, 3

        self._env = MockEnv(self.state_dim, self.action_dim)

        self._rl_parameters = RLParameters(
            gamma=0.9,
            target_update_rate=0.5,
            reward_burnin=10,
            maxq_learning=False,
        )
        self._rl_parameters_maxq = RLParameters(
            gamma=0.9,
            target_update_rate=0.5,
            reward_burnin=10,
            maxq_learning=True,
        )
        self._rl_parameters = ContinuousActionModelParameters(
            rl=self._rl_parameters,
            training=TrainingParameters(
                layers=[
                    -1, self._env.num_states * self._env.num_actions * 2, 1
                ],
                activations=['linear', 'linear'],
                minibatch_size=1024,
                learning_rate=0.01,
                optimizer='ADAM',
            ),
            knn=KnnParameters(model_type='DQN', ))
        self._trainer = ContinuousActionDQNTrainer(
            self._env.normalization, self._env.normalization_action,
            self._rl_parameters)
Example #30
0
def create_trainer(model_type, params, rl_parameters, use_gpu, env):
    if model_type == ModelType.PYTORCH_DISCRETE_DQN.value:
        training_parameters = params["training"]
        if isinstance(training_parameters, dict):
            training_parameters = TrainingParameters(**training_parameters)
        rainbow_parameters = params["rainbow"]
        if isinstance(rainbow_parameters, dict):
            rainbow_parameters = RainbowDQNParameters(**rainbow_parameters)
        if env.img:
            assert (training_parameters.cnn_parameters
                    is not None), "Missing CNN parameters for image input"
            if isinstance(training_parameters.cnn_parameters, dict):
                training_parameters.cnn_parameters = CNNParameters(
                    **training_parameters.cnn_parameters)
            training_parameters.cnn_parameters.conv_dims[
                0] = env.num_input_channels
            training_parameters.cnn_parameters.input_height = env.height
            training_parameters.cnn_parameters.input_width = env.width
            training_parameters.cnn_parameters.num_input_channels = (
                env.num_input_channels)
        else:
            assert (training_parameters.cnn_parameters is
                    None), "Extra CNN parameters for non-image input"
        trainer_params = DiscreteActionModelParameters(
            actions=env.actions,
            rl=rl_parameters,
            training=training_parameters,
            rainbow=rainbow_parameters,
        )
        trainer = DQNTrainer(trainer_params, env.normalization, use_gpu)

    elif model_type == ModelType.PYTORCH_PARAMETRIC_DQN.value:
        training_parameters = params["training"]
        if isinstance(training_parameters, dict):
            training_parameters = TrainingParameters(**training_parameters)
        rainbow_parameters = params["rainbow"]
        if isinstance(rainbow_parameters, dict):
            rainbow_parameters = RainbowDQNParameters(**rainbow_parameters)
        if env.img:
            assert (training_parameters.cnn_parameters
                    is not None), "Missing CNN parameters for image input"
            training_parameters.cnn_parameters.conv_dims[
                0] = env.num_input_channels
        else:
            assert (training_parameters.cnn_parameters is
                    None), "Extra CNN parameters for non-image input"
        trainer_params = ContinuousActionModelParameters(
            rl=rl_parameters,
            training=training_parameters,
            rainbow=rainbow_parameters)
        trainer = ParametricDQNTrainer(trainer_params, env.normalization,
                                       env.normalization_action, use_gpu)
    elif model_type == ModelType.CONTINUOUS_ACTION.value:
        training_parameters = params["shared_training"]
        if isinstance(training_parameters, dict):
            training_parameters = DDPGTrainingParameters(**training_parameters)

        actor_parameters = params["actor_training"]
        if isinstance(actor_parameters, dict):
            actor_parameters = DDPGNetworkParameters(**actor_parameters)

        critic_parameters = params["critic_training"]
        if isinstance(critic_parameters, dict):
            critic_parameters = DDPGNetworkParameters(**critic_parameters)

        trainer_params = DDPGModelParameters(
            rl=rl_parameters,
            shared_training=training_parameters,
            actor_training=actor_parameters,
            critic_training=critic_parameters,
        )

        action_range_low = env.action_space.low.astype(np.float32)
        action_range_high = env.action_space.high.astype(np.float32)

        trainer = DDPGTrainer(
            trainer_params,
            env.normalization,
            env.normalization_action,
            torch.from_numpy(action_range_low).unsqueeze(dim=0),
            torch.from_numpy(action_range_high).unsqueeze(dim=0),
            use_gpu,
        )

    elif model_type == ModelType.SOFT_ACTOR_CRITIC.value:
        trainer_params = SACModelParameters(
            rl=rl_parameters,
            training=SACTrainingParameters(
                minibatch_size=params["sac_training"]["minibatch_size"],
                use_2_q_functions=params["sac_training"]["use_2_q_functions"],
                q_network_optimizer=OptimizerParameters(
                    **params["sac_training"]["q_network_optimizer"]),
                value_network_optimizer=OptimizerParameters(
                    **params["sac_training"]["value_network_optimizer"]),
                actor_network_optimizer=OptimizerParameters(
                    **params["sac_training"]["actor_network_optimizer"]),
                entropy_temperature=params["sac_training"]
                ["entropy_temperature"],
            ),
            q_network=FeedForwardParameters(**params["sac_q_training"]),
            value_network=FeedForwardParameters(
                **params["sac_value_training"]),
            actor_network=FeedForwardParameters(
                **params["sac_actor_training"]),
        )
        trainer = get_sac_trainer(env, trainer_params, use_gpu)

    else:
        raise NotImplementedError(
            "Model of type {} not supported".format(model_type))

    return trainer
Example #31
0
def create_trainer(model_type, params, rl_parameters, use_gpu, env):
    if model_type == ModelType.PYTORCH_DISCRETE_DQN.value:
        training_parameters = params["training"]
        if isinstance(training_parameters, dict):
            training_parameters = TrainingParameters(**training_parameters)
        rainbow_parameters = params["rainbow"]
        if isinstance(rainbow_parameters, dict):
            rainbow_parameters = RainbowDQNParameters(**rainbow_parameters)
        if env.img:
            assert (
                training_parameters.cnn_parameters is not None
            ), "Missing CNN parameters for image input"
            if isinstance(training_parameters.cnn_parameters, dict):
                training_parameters.cnn_parameters = CNNParameters(
                    **training_parameters.cnn_parameters
                )
            training_parameters.cnn_parameters.conv_dims[0] = env.num_input_channels
            training_parameters.cnn_parameters.input_height = env.height
            training_parameters.cnn_parameters.input_width = env.width
            training_parameters.cnn_parameters.num_input_channels = (
                env.num_input_channels
            )
        else:
            assert (
                training_parameters.cnn_parameters is None
            ), "Extra CNN parameters for non-image input"
        trainer_params = DiscreteActionModelParameters(
            actions=env.actions,
            rl=rl_parameters,
            training=training_parameters,
            rainbow=rainbow_parameters,
        )
        trainer = DQNTrainer(trainer_params, env.normalization, use_gpu)

    elif model_type == ModelType.PYTORCH_PARAMETRIC_DQN.value:
        training_parameters = params["training"]
        if isinstance(training_parameters, dict):
            training_parameters = TrainingParameters(**training_parameters)
        rainbow_parameters = params["rainbow"]
        if isinstance(rainbow_parameters, dict):
            rainbow_parameters = RainbowDQNParameters(**rainbow_parameters)
        if env.img:
            assert (
                training_parameters.cnn_parameters is not None
            ), "Missing CNN parameters for image input"
            training_parameters.cnn_parameters.conv_dims[0] = env.num_input_channels
        else:
            assert (
                training_parameters.cnn_parameters is None
            ), "Extra CNN parameters for non-image input"
        trainer_params = ContinuousActionModelParameters(
            rl=rl_parameters, training=training_parameters, rainbow=rainbow_parameters
        )
        trainer = ParametricDQNTrainer(
            trainer_params, env.normalization, env.normalization_action, use_gpu
        )
    elif model_type == ModelType.CONTINUOUS_ACTION.value:
        training_parameters = params["shared_training"]
        if isinstance(training_parameters, dict):
            training_parameters = DDPGTrainingParameters(**training_parameters)

        actor_parameters = params["actor_training"]
        if isinstance(actor_parameters, dict):
            actor_parameters = DDPGNetworkParameters(**actor_parameters)

        critic_parameters = params["critic_training"]
        if isinstance(critic_parameters, dict):
            critic_parameters = DDPGNetworkParameters(**critic_parameters)

        trainer_params = DDPGModelParameters(
            rl=rl_parameters,
            shared_training=training_parameters,
            actor_training=actor_parameters,
            critic_training=critic_parameters,
        )

        action_range_low = env.action_space.low.astype(np.float32)
        action_range_high = env.action_space.high.astype(np.float32)

        trainer = DDPGTrainer(
            trainer_params,
            env.normalization,
            env.normalization_action,
            torch.from_numpy(action_range_low).unsqueeze(dim=0),
            torch.from_numpy(action_range_high).unsqueeze(dim=0),
            use_gpu,
        )

    elif model_type == ModelType.SOFT_ACTOR_CRITIC.value:
        trainer_params = SACModelParameters(
            rl=rl_parameters,
            training=SACTrainingParameters(
                minibatch_size=params["sac_training"]["minibatch_size"],
                use_2_q_functions=params["sac_training"]["use_2_q_functions"],
                q_network_optimizer=OptimizerParameters(
                    **params["sac_training"]["q_network_optimizer"]
                ),
                value_network_optimizer=OptimizerParameters(
                    **params["sac_training"]["value_network_optimizer"]
                ),
                actor_network_optimizer=OptimizerParameters(
                    **params["sac_training"]["actor_network_optimizer"]
                ),
                entropy_temperature=params["sac_training"]["entropy_temperature"],
            ),
            q_network=FeedForwardParameters(**params["sac_q_training"]),
            value_network=FeedForwardParameters(**params["sac_value_training"]),
            actor_network=FeedForwardParameters(**params["sac_actor_training"]),
        )
        trainer = get_sac_trainer(env, trainer_params, use_gpu)

    else:
        raise NotImplementedError("Model of type {} not supported".format(model_type))

    return trainer