def n_fold_cv(n, samples, labels): (sample_groups, sample_labels) = split_groups(n, samples, labels) p = {} r = {} sz = {} for i in range(n): train_samples = [ x for j in range(n) if j != i for x in sample_groups[j] ] train_labels = [ x for j in range(n) if j != i for x in sample_labels[j] ] test_samples = sample_groups[i] test_labels = sample_labels[i] algs = ml.run(train_samples, train_labels, test_samples, test_labels) for alg in algs: key = alg.__class__.__name__ if key not in p: p[key] = 0.0 r[key] = 0.0 p[key] += alg.P() r[key] += alg.R() fmt = "{0:30}{1:<20}{2:<20}" print "N-fold Cross Validation:\n----------------------------------------" print fmt.format("Algo", "P", "R") for key in p.keys(): print fmt.format(key, p[key] / n, r[key] / n)
def run_test(train_samples, train_labels, test_samples, test_labels): algs = ml.run(train_samples, train_labels, test_samples, test_labels) print "" fmt = "{0:30}{1:<20}{2:<20}" print "Test set results:\n----------------------------------------" print fmt.format("Algo", "P", "R") for alg in algs: key = alg.__class__.__name__ print fmt.format(key, alg.P(), alg.R())
def generete_embeddings(code): # printAst(*parse(code)) parser_res = parse(code) emb = ml.run(parser_res) return emb
def test(request): animal = ml.run() print(animal) return HttpResponse(animal)
type=int, help='print frequency') parser.add_argument('--output-dir', default='data/coco/checkpoints', help='path where to save') parser.add_argument('--resume', default='', help='resume from checkpoint') parser.add_argument('--aspect-ratio-group-factor', default=0, type=int) parser.add_argument( "--test-only", dest="test_only", help="Only test the model", action="store_true", ) parser.add_argument( "--pretrained", dest="pretrained", help="Use pre-trained models from the modelzoo", action="store_true", ) # distributed training parameters #parser.add_argument('--world-size', default=2, type=int, help='number of distributed processes') #parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training') args = parser.parse_args() if args.output_dir: utils.mkdir(args.output_dir) ml.run(main, args, name='train')