def test_reg_grad_data2_2(self): y = self.data2[:, -1:] X = self.data2[:, :-1] m, n = X.shape intercept = ones((m, 1), dtype=float64) X = append(intercept, X, axis=1) theta = ones((n + 1, 1), dtype=float64) _lambda = 1000000 assert_allclose([[-338407.808], [-759558338.468], [-1092403.298]], reg_grad(X, y, theta, _lambda), rtol=0, atol=0.001)
def test_reg_grad_data2_1(self): y = self.data2[:, -1:] X = self.data2[:, :-1] m, n = X.shape intercept = ones((m, 1), dtype=float64) X = append(intercept, X, axis=1) theta = ones((n + 1, 1), dtype=float64) _lambda = 0 assert_allclose([[-338407.808], [-759579615.064], [-1113679.894]], reg_grad(X, y, theta, _lambda), rtol=0, atol=0.001)
def test_reg_grad_data1_3(self): y = self.data1[:, -1:] X = self.data1[:, :-1] m, n = X.shape intercept = ones((m, 1), dtype=float64) X = append(intercept, X, axis=1) theta = array([[-1], [2]]) _lambda = 750 assert_allclose([[9.480465], [104.783153]], reg_grad(X, y, theta, _lambda), rtol=0, atol=0.001)
def test_reg_grad_data1_2(self): y = self.data1[:, -1:] X = self.data1[:, :-1] m, n = X.shape intercept = ones((m, 1), dtype=float64) X = append(intercept, X, axis=1) theta = ones((n + 1, 1), dtype=float64) _lambda = 100 assert_allclose([[3.320665], [25.265821]], reg_grad(X, y, theta, _lambda), rtol=0, atol=0.001)
def test_reg_grad_data2_3(self): y = self.data2[:, -1:] X = self.data2[:, :-1] m, n = X.shape intercept = ones((m, 1), dtype=float64) X = append(intercept, X, axis=1) theta = array([[-25.3], [32], [7.8]]) _lambda = 1000000 assert_allclose([[-276391.444681], [-615660007.370213], [-740838.968085]], reg_grad(X, y, theta, _lambda), rtol=0, atol=0.001)
def test_reg_grad_data1_6(self): y = self.data1[:, -1:] X = self.data1[:, :-1] m, n = X.shape intercept = ones((m, 1), dtype=float64) X = append(intercept, X, axis=1) theta = array([[-12.4], [23.56]]) _lambda = 943 def J(theta): return reg_cost_func(X, y, theta, _lambda) assert_allclose(reg_grad(X, y, theta, _lambda), numerical_grad(J, theta, self.err), rtol=0, atol=0.001)
def test_reg_grad_data1_4(self): y = self.data1[:, -1:] X = self.data1[:, :-1] m, n = X.shape intercept = ones((m, 1), dtype=float64) X = append(intercept, X, axis=1) theta = -8.4 * ones((n + 1, 1), dtype=float64) _lambda = 0.762 def J(theta): return reg_cost_func(X, y, theta, _lambda) assert_allclose(reg_grad(X, y, theta, _lambda), numerical_grad(J, theta, self.err), rtol=0, atol=0.001)