pp.create_labels(audio_path=audio_path, output_classes=cf, output_labels=lf) labels = np.load(resource_path + "\\labels\\" + lf) labelencoder = LabelEncoder() labelencoder.classes_ = np.load(resource_path + "\\labels\\" + cf) classes = labelencoder.transform(labels) pp.one_hot(classes, "onehotlabels.npy") onehotlabels = np.load(resource_path+"\\labels\\onehotlabels.npy") print(labels.shape) print(classes.shape) scaled_feature_vectors = pickle.load(open(resource_path + "\\feature_vectors\\CQT_SK\\" + "CQT_SK_VECTORS_44100_28_37_512.pl", "rb")) #for cqt omit otherwise scaled_feature_vectors = scaled_feature_vectors.reshape(len(scaled_feature_vectors), 37) print(scaled_feature_vectors.shape) train_set, test_set, train_classes, test_classes, test_classes = pp.split_training_set(onehotlabels, scaled_feature_vectors) test_predictions = model.predict(test_set) predictions_round=np.around(test_predictions).astype('int') predictions_int = np.argmax(predictions_round, axis=1) predicted_labels= labelencoder.inverse_transform(np.ravel(predictions_int)) test_round=np.around(test_classes).astype('int') test_int = np.argmax(predictions_round, axis=1) test_labels= labelencoder.inverse_transform(np.ravel(predictions_int)) plt.figure(figsize=(18, 13)) evaluation.plot_confusion_matrix(predicted_labels, labelencoder.classes_, test_labels) plt.savefig(plot_path + "\\DNN\\" + log_name_cqt[:-3] +".png") wp = evaluation.wrong_predictions(predicted_labels, test_classes)
print(labels.shape) print(classes.shape) ''' #CREATE VECTORS feature_vectors, files = pp.get_cqt_folder(path=audio_path) pp.save_cqt_sk(feature_vectors, log_name_cqt + ".pl") np.save(resource_path + "\\files\\" + files_path + ".npy", files) ''' scaled_feature_vectors = pickle.load(open(resource_path + "\\feature_vectors\\" + log_name_cqt +".pl", "rb")) #for cqt omit otherwise scaled_feature_vectors = scaled_feature_vectors.reshape(len(scaled_feature_vectors), n_bins) print(scaled_feature_vectors.shape) train_set, test_set, train_classes, test_classes, test_index = pp.split_training_set(classes, scaled_feature_vectors) #GRIDSEARCH C_range = np.logspace(-2, 10, 2) gamma_range = np.logspace(-9, 3, 2) kernel = np.array(['rbf']) param_grid = [{'C': C_range, 'gamma': gamma_range, 'kernel':kernel }] model = GridSearchCV(SVC(), param_grid) model.fit(train_set, train_classes) print("best params are %s with score %0.2f" % (model.best_params_, model.best_score_)) learning.save_model(model, model_path + "\\SVM\\SVM_grid_windowed_rbf") ''' model = learning.kNN(train_set, train_classes) learning.save_model(model, model_path+"\\SVM\\SVM_grid_windowed")