def test_linear_regression_validation(self, get_regression_data):
     X, y = get_regression_data
     with pytest.raises(ValueError):
         est = LinearRegression(metric='accuracy')
         est.fit(X, y)
     with pytest.raises(ValueError):
         est = LinearRegression(cost='binary_cross_entropy')
         est.fit(X, y)
Example #2
0
def predict_y():
    X, y = datasets.load_boston(return_X_y=True)
    scaler = StandardScaler()    
    X = scaler.fit_transform(X)
    gd = LinearRegression(epochs=5)
    gd.fit(X, y)
    y_pred = gd.predict(X)
    return y, y_pred
Example #3
0
def fit_multiple_models(get_regression_data):
        X, y = get_regression_data
        X = X[:,5]
        X = np.reshape(X, (-1,1))
        models = {}
        bgd = LinearRegression(epochs=200, seed=50)
        sgd = LinearRegression(epochs=200, seed=50, batch_size=1)
        mgd = LinearRegression(epochs=200, seed=50, batch_size=32)
        models= {'Batch Gradient Descent': bgd.fit(X,y),
                 'Stochastic Gradient Descent': sgd.fit(X,y),
                 'Mini-batch Gradient Descent': mgd.fit(X,y)}
        return models
# Linear Regression Scatterplot
data = go.Scatter(x=X[:, 0],
                  y=y,
                  mode='markers',
                  marker=dict(color='steelblue'))
layout = go.Layout(title='Boston Housing Prices by Rooms',
                   height=400,
                   width=800,
                   showlegend=False,
                   xaxis_title="Average No. Rooms",
                   yaxis_title="Median Price ($000)",
                   margin=dict(l=10, r=10, t=40, b=10),
                   template='plotly_white')
fig = go.Figure(data=data, layout=layout)
fig.show()
po.plot(fig, filename="./content/figures/boston.html", auto_open=False)
# ---------------------------------------------------------------------------- #
#                             LINEAR REGRESSION                                #
# ---------------------------------------------------------------------------- #
#%%
# Linear Regression
lr = LinearRegression(epochs=50, learning_rate=0.05)
lr.fit(X_scaled, y)
plot = SingleModelSearch3D()
plot.search(lr, directory=directory, filename="linear_regression_search.gif")
plot = SingleModelFit2D()
plot.fit(lr, directory=directory, filename="linear_regression_fit.gif")
#%%

# %%
 def test_linear_regression_name(self, get_regression_data):
     X, y = get_regression_data
     est = LinearRegression()
     est.fit(X, y)
     assert est.name == "Linear Regression with Batch Gradient Descent", "incorrect name"
Example #6
0
#                             LINEAR REGRESSION                                #
# ---------------------------------------------------------------------------- #
#%%
# Linear Regression
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
lr = LinearRegression(epochs=1000,
                      learning_rate=0.01,
                      val_size=0.2,
                      patience=40,
                      early_stop=True,
                      metric='r2',
                      verbose=True,
                      checkpoint=100)
lr.fit(X_train, y_train)
print(lr.intercept_)
print(lr.coef_.shape)
# ---------------------------------------------------------------------------- #
#                                ANIMATIONS                                    #
# ---------------------------------------------------------------------------- #
#%%
# Animations
plot = SingleModelSearch3D()
plot.search(lr,
            directory=directory,
            filename="linear_regression_search_test.gif")
plot = SingleModelFit2D()
plot.fit(lr, directory=directory, filename="linear_regression_fit_test.gif")
#%%
# ---------------------------------------------------------------------------- #