def regression():
    # Generate a random regression problem
    X, y = make_regression(n_samples=5000, n_features=25, n_informative=25,
                           n_targets=1, random_state=100, noise=0.05)
    y *= 0.01
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1,
                                                        random_state=1111)

    model = NeuralNet(
        layers=[
            Dense(64, Parameters(init='normal')),
            Activation('linear'),
            Dense(32, Parameters(init='normal')),
            Activation('linear'),
            Dense(1),
        ],
        loss='mse',
        optimizer=Adam(),
        metric='mse',
        batch_size=256,
        max_epochs=15,
    )
    model.fit(X_train, y_train)
    predictions = model.predict(X_test)
    print("regression mse", mean_squared_error(y_test, predictions.flatten()))
Example #2
0
def mlp_model(n_actions, batch_size=64):
    model = NeuralNet(
        layers=[Dense(32), Activation("relu"),
                Dense(n_actions)],
        loss="mse",
        optimizer=Adam(),
        metric="mse",
        batch_size=batch_size,
        max_epochs=1,
        verbose=False,
    )
    return model
Example #3
0
def test_mlp():
    model = NeuralNet(
        layers=[
            Dense(16, Parameters(init='normal')),
            Activation('linear'),
            Dense(8, Parameters(init='normal')),
            Activation('linear'),
            Dense(1),
        ],
        loss='mse',
        optimizer=Adam(),
        metric='mse',
        batch_size=64,
        max_epochs=150,
    )
    model.fit(X_train, y_train)
    predictions = model.predict(X_test)
    assert mean_squared_error(y_test, predictions.flatten()) < 1.0
Example #4
0
def addition_nlp(ReccurentLayer):
    X_train, X_test, y_train, y_test = addition_dataset(8, 5000)

    print(X_train.shape, X_test.shape)
    model = NeuralNet(
        layers=[
            ReccurentLayer,
            TimeDistributedDense(1),
            Activation('sigmoid'),
        ],
        loss='mse',
        optimizer=Adam(),
        metric='mse',
        batch_size=64,
        max_epochs=15,
    )
    model.fit(X_train, y_train)
    predictions = np.round(model.predict(X_test))
    predictions = np.packbits(predictions.astype(np.uint8))
    y_test = np.packbits(y_test.astype(np.int))
    print(accuracy(y_test, predictions))