Example #1
0
    def __init__(
        self,
        observation_specs: List[ObservationSpec],
        network_settings: NetworkSettings,
        action_spec: ActionSpec,
        conditional_sigma: bool = False,
        tanh_squash: bool = False,
    ):
        super().__init__()
        self.action_spec = action_spec
        self.version_number = torch.nn.Parameter(
            torch.Tensor([self.MODEL_EXPORT_VERSION]), requires_grad=False
        )
        self.is_continuous_int_deprecated = torch.nn.Parameter(
            torch.Tensor([int(self.action_spec.is_continuous())]), requires_grad=False
        )
        self.continuous_act_size_vector = torch.nn.Parameter(
            torch.Tensor([int(self.action_spec.continuous_size)]), requires_grad=False
        )
        self.discrete_act_size_vector = torch.nn.Parameter(
            torch.Tensor([self.action_spec.discrete_branches]), requires_grad=False
        )
        self.act_size_vector_deprecated = torch.nn.Parameter(
            torch.Tensor(
                [
                    self.action_spec.continuous_size
                    + sum(self.action_spec.discrete_branches)
                ]
            ),
            requires_grad=False,
        )
        self.network_body = NetworkBody(observation_specs, network_settings)
        if network_settings.memory is not None:
            self.encoding_size = network_settings.memory.memory_size // 2
        else:
            self.encoding_size = network_settings.hidden_units
        self.memory_size_vector = torch.nn.Parameter(
            torch.Tensor([int(self.network_body.memory_size)]), requires_grad=False
        )

        self.action_model = ActionModel(
            self.encoding_size,
            action_spec,
            conditional_sigma=conditional_sigma,
            tanh_squash=tanh_squash,
        )
Example #2
0
    def __init__(
        self,
        observation_shapes: List[Tuple[int, ...]],
        network_settings: NetworkSettings,
        action_spec: ActionSpec,
        conditional_sigma: bool = False,
        tanh_squash: bool = False,
    ):
        super().__init__()
        self.action_spec = action_spec
        self.version_number = torch.nn.Parameter(torch.Tensor([2.0]))
        self.is_continuous_int_deprecated = torch.nn.Parameter(
            torch.Tensor([int(self.action_spec.is_continuous())])
        )
        self.continuous_act_size_vector = torch.nn.Parameter(
            torch.Tensor([int(self.action_spec.continuous_size)]), requires_grad=False
        )
        # TODO: export list of branch sizes instead of sum
        self.discrete_act_size_vector = torch.nn.Parameter(
            torch.Tensor([sum(self.action_spec.discrete_branches)]), requires_grad=False
        )
        self.act_size_vector_deprecated = torch.nn.Parameter(
            torch.Tensor(
                [
                    self.action_spec.continuous_size
                    + sum(self.action_spec.discrete_branches)
                ]
            ),
            requires_grad=False,
        )
        self.network_body = NetworkBody(observation_shapes, network_settings)
        if network_settings.memory is not None:
            self.encoding_size = network_settings.memory.memory_size // 2
        else:
            self.encoding_size = network_settings.hidden_units

        self.action_model = ActionModel(
            self.encoding_size,
            action_spec,
            conditional_sigma=conditional_sigma,
            tanh_squash=tanh_squash,
        )
Example #3
0
class SimpleActor(nn.Module, Actor):
    def __init__(
        self,
        observation_specs: List[ObservationSpec],
        network_settings: NetworkSettings,
        action_spec: ActionSpec,
        conditional_sigma: bool = False,
        tanh_squash: bool = False,
    ):
        super().__init__()
        self.action_spec = action_spec
        self.version_number = torch.nn.Parameter(torch.Tensor([2.0]),
                                                 requires_grad=False)
        self.is_continuous_int_deprecated = torch.nn.Parameter(
            torch.Tensor([int(self.action_spec.is_continuous())]),
            requires_grad=False)
        self.continuous_act_size_vector = torch.nn.Parameter(
            torch.Tensor([int(self.action_spec.continuous_size)]),
            requires_grad=False)
        # TODO: export list of branch sizes instead of sum
        self.discrete_act_size_vector = torch.nn.Parameter(torch.Tensor(
            [sum(self.action_spec.discrete_branches)]),
                                                           requires_grad=False)
        self.act_size_vector_deprecated = torch.nn.Parameter(
            torch.Tensor([
                self.action_spec.continuous_size +
                sum(self.action_spec.discrete_branches)
            ]),
            requires_grad=False,
        )
        self.network_body = NetworkBody(observation_specs, network_settings)
        if network_settings.memory is not None:
            self.encoding_size = network_settings.memory.memory_size // 2
        else:
            self.encoding_size = network_settings.hidden_units
        self.memory_size_vector = torch.nn.Parameter(torch.Tensor(
            [int(self.network_body.memory_size)]),
                                                     requires_grad=False)

        self.action_model = ActionModel(
            self.encoding_size,
            action_spec,
            conditional_sigma=conditional_sigma,
            tanh_squash=tanh_squash,
        )

    @property
    def memory_size(self) -> int:
        return self.network_body.memory_size

    def update_normalization(self, buffer: AgentBuffer) -> None:
        self.network_body.update_normalization(buffer)

    def get_action_and_stats(
        self,
        inputs: List[torch.Tensor],
        masks: Optional[torch.Tensor] = None,
        memories: Optional[torch.Tensor] = None,
        sequence_length: int = 1,
    ) -> Tuple[AgentAction, ActionLogProbs, torch.Tensor, torch.Tensor]:

        encoding, memories = self.network_body(inputs,
                                               memories=memories,
                                               sequence_length=sequence_length)
        action, log_probs, entropies = self.action_model(encoding, masks)
        return action, log_probs, entropies, memories

    def get_stats(
        self,
        inputs: List[torch.Tensor],
        actions: AgentAction,
        masks: Optional[torch.Tensor] = None,
        memories: Optional[torch.Tensor] = None,
        sequence_length: int = 1,
    ) -> Tuple[ActionLogProbs, torch.Tensor]:
        encoding, actor_mem_outs = self.network_body(
            inputs, memories=memories, sequence_length=sequence_length)
        log_probs, entropies = self.action_model.evaluate(
            encoding, masks, actions)

        return log_probs, entropies

    def forward(
        self,
        vec_inputs: List[torch.Tensor],
        vis_inputs: List[torch.Tensor],
        var_len_inputs: List[torch.Tensor],
        masks: Optional[torch.Tensor] = None,
        memories: Optional[torch.Tensor] = None,
    ) -> Tuple[Union[int, torch.Tensor], ...]:
        """
        Note: This forward() method is required for exporting to ONNX. Don't modify the inputs and outputs.

        At this moment, torch.onnx.export() doesn't accept None as tensor to be exported,
        so the size of return tuple varies with action spec.
        """
        # This code will convert the vec and vis obs into a list of inputs for the network
        concatenated_vec_obs = vec_inputs[0]
        inputs = []
        start = 0
        end = 0
        vis_index = 0
        var_len_index = 0
        for i, enc in enumerate(self.network_body.processors):
            if isinstance(enc, VectorInput):
                # This is a vec_obs
                vec_size = self.network_body.embedding_sizes[i]
                end = start + vec_size
                inputs.append(concatenated_vec_obs[:, start:end])
                start = end
            elif isinstance(enc, EntityEmbedding):
                inputs.append(var_len_inputs[var_len_index])
                var_len_index += 1
            else:  # visual input
                inputs.append(vis_inputs[vis_index])
                vis_index += 1

        # End of code to convert the vec and vis obs into a list of inputs for the network
        encoding, memories_out = self.network_body(inputs,
                                                   memories=memories,
                                                   sequence_length=1)

        (
            cont_action_out,
            disc_action_out,
            action_out_deprecated,
        ) = self.action_model.get_action_out(encoding, masks)
        export_out = [self.version_number, self.memory_size_vector]
        if self.action_spec.continuous_size > 0:
            export_out += [cont_action_out, self.continuous_act_size_vector]
        if self.action_spec.discrete_size > 0:
            export_out += [disc_action_out, self.discrete_act_size_vector]
        # Only export deprecated nodes with non-hybrid action spec
        if self.action_spec.continuous_size == 0 or self.action_spec.discrete_size == 0:
            export_out += [
                action_out_deprecated,
                self.is_continuous_int_deprecated,
                self.act_size_vector_deprecated,
            ]
        return tuple(export_out)
Example #4
0
class SimpleActor(nn.Module, Actor):
    MODEL_EXPORT_VERSION = 3  # Corresponds to ModelApiVersion.MLAgents2_0

    def __init__(
        self,
        observation_specs: List[ObservationSpec],
        network_settings: NetworkSettings,
        action_spec: ActionSpec,
        conditional_sigma: bool = False,
        tanh_squash: bool = False,
    ):
        super().__init__()
        self.action_spec = action_spec
        self.version_number = torch.nn.Parameter(torch.Tensor(
            [self.MODEL_EXPORT_VERSION]),
                                                 requires_grad=False)
        self.is_continuous_int_deprecated = torch.nn.Parameter(
            torch.Tensor([int(self.action_spec.is_continuous())]),
            requires_grad=False)
        self.continuous_act_size_vector = torch.nn.Parameter(
            torch.Tensor([int(self.action_spec.continuous_size)]),
            requires_grad=False)
        self.discrete_act_size_vector = torch.nn.Parameter(torch.Tensor(
            [self.action_spec.discrete_branches]),
                                                           requires_grad=False)
        self.act_size_vector_deprecated = torch.nn.Parameter(
            torch.Tensor([
                self.action_spec.continuous_size +
                sum(self.action_spec.discrete_branches)
            ]),
            requires_grad=False,
        )
        self.network_body = NetworkBody(observation_specs, network_settings)
        if network_settings.memory is not None:
            self.encoding_size = network_settings.memory.memory_size // 2
        else:
            self.encoding_size = network_settings.hidden_units
        self.memory_size_vector = torch.nn.Parameter(torch.Tensor(
            [int(self.network_body.memory_size)]),
                                                     requires_grad=False)

        self.action_model = ActionModel(
            self.encoding_size,
            action_spec,
            conditional_sigma=conditional_sigma,
            tanh_squash=tanh_squash,
        )

    @property
    def memory_size(self) -> int:
        return self.network_body.memory_size

    def update_normalization(self, buffer: AgentBuffer) -> None:
        self.network_body.update_normalization(buffer)

    def get_action_and_stats(
        self,
        inputs: List[torch.Tensor],
        masks: Optional[torch.Tensor] = None,
        memories: Optional[torch.Tensor] = None,
        sequence_length: int = 1,
    ) -> Tuple[AgentAction, ActionLogProbs, torch.Tensor, torch.Tensor]:

        encoding, memories = self.network_body(inputs,
                                               memories=memories,
                                               sequence_length=sequence_length)
        action, log_probs, entropies = self.action_model(encoding, masks)
        return action, log_probs, entropies, memories

    def get_stats(
        self,
        inputs: List[torch.Tensor],
        actions: AgentAction,
        masks: Optional[torch.Tensor] = None,
        memories: Optional[torch.Tensor] = None,
        sequence_length: int = 1,
    ) -> Tuple[ActionLogProbs, torch.Tensor]:
        encoding, actor_mem_outs = self.network_body(
            inputs, memories=memories, sequence_length=sequence_length)
        log_probs, entropies = self.action_model.evaluate(
            encoding, masks, actions)

        return log_probs, entropies

    def forward(
        self,
        inputs: List[torch.Tensor],
        masks: Optional[torch.Tensor] = None,
        memories: Optional[torch.Tensor] = None,
    ) -> Tuple[Union[int, torch.Tensor], ...]:
        """
        Note: This forward() method is required for exporting to ONNX. Don't modify the inputs and outputs.

        At this moment, torch.onnx.export() doesn't accept None as tensor to be exported,
        so the size of return tuple varies with action spec.
        """
        encoding, memories_out = self.network_body(inputs,
                                                   memories=memories,
                                                   sequence_length=1)

        (
            cont_action_out,
            disc_action_out,
            action_out_deprecated,
        ) = self.action_model.get_action_out(encoding, masks)
        export_out = [self.version_number, self.memory_size_vector]
        if self.action_spec.continuous_size > 0:
            export_out += [cont_action_out, self.continuous_act_size_vector]
        if self.action_spec.discrete_size > 0:
            export_out += [disc_action_out, self.discrete_act_size_vector]
        if self.network_body.memory_size > 0:
            export_out += [memories_out]
        return tuple(export_out)
Example #5
0
def create_action_model(inp_size, act_size, deterministic=False):
    mask = torch.ones([1, act_size ** 2])
    action_spec = ActionSpec(act_size, tuple(act_size for _ in range(act_size)))
    action_model = ActionModel(inp_size, action_spec, deterministic=deterministic)
    return action_model, mask
Example #6
0
def create_action_model(inp_size, act_size):
    mask = torch.ones([1, act_size * 2])
    action_spec = ActionSpec(act_size,
                             tuple(act_size for _ in range(act_size)))
    action_model = ActionModel(inp_size, action_spec)
    return action_model, mask
Example #7
0
class SimpleActor(nn.Module, Actor):
    def __init__(
        self,
        observation_shapes: List[Tuple[int, ...]],
        network_settings: NetworkSettings,
        action_spec: ActionSpec,
        conditional_sigma: bool = False,
        tanh_squash: bool = False,
    ):
        super().__init__()
        self.action_spec = action_spec
        self.version_number = torch.nn.Parameter(torch.Tensor([2.0]))
        self.is_continuous_int_deprecated = torch.nn.Parameter(
            torch.Tensor([int(self.action_spec.is_continuous())])
        )
        self.continuous_act_size_vector = torch.nn.Parameter(
            torch.Tensor([int(self.action_spec.continuous_size)]), requires_grad=False
        )
        # TODO: export list of branch sizes instead of sum
        self.discrete_act_size_vector = torch.nn.Parameter(
            torch.Tensor([sum(self.action_spec.discrete_branches)]), requires_grad=False
        )
        self.act_size_vector_deprecated = torch.nn.Parameter(
            torch.Tensor(
                [
                    self.action_spec.continuous_size
                    + sum(self.action_spec.discrete_branches)
                ]
            ),
            requires_grad=False,
        )
        self.network_body = NetworkBody(observation_shapes, network_settings)
        if network_settings.memory is not None:
            self.encoding_size = network_settings.memory.memory_size // 2
        else:
            self.encoding_size = network_settings.hidden_units

        self.action_model = ActionModel(
            self.encoding_size,
            action_spec,
            conditional_sigma=conditional_sigma,
            tanh_squash=tanh_squash,
        )

    @property
    def memory_size(self) -> int:
        return self.network_body.memory_size

    def update_normalization(self, vector_obs: List[torch.Tensor]) -> None:
        self.network_body.update_normalization(vector_obs)

    def forward(
        self,
        vec_inputs: List[torch.Tensor],
        vis_inputs: List[torch.Tensor],
        masks: Optional[torch.Tensor] = None,
        memories: Optional[torch.Tensor] = None,
    ) -> Tuple[Union[int, torch.Tensor], ...]:
        """
        Note: This forward() method is required for exporting to ONNX. Don't modify the inputs and outputs.

        At this moment, torch.onnx.export() doesn't accept None as tensor to be exported,
        so the size of return tuple varies with action spec.
        """
        encoding, memories_out = self.network_body(
            vec_inputs, vis_inputs, memories=memories, sequence_length=1
        )

        (
            cont_action_out,
            disc_action_out,
            action_out_deprecated,
        ) = self.action_model.get_action_out(encoding, masks)
        export_out = [
            self.version_number,
            torch.Tensor([self.network_body.memory_size]),
        ]
        if self.action_spec.continuous_size > 0:
            export_out += [cont_action_out, self.continuous_act_size_vector]
        if self.action_spec.discrete_size > 0:
            export_out += [disc_action_out, self.discrete_act_size_vector]
        # Only export deprecated nodes with non-hybrid action spec
        if self.action_spec.continuous_size == 0 or self.action_spec.discrete_size == 0:
            export_out += [
                action_out_deprecated,
                self.is_continuous_int_deprecated,
                self.act_size_vector_deprecated,
            ]
        return tuple(export_out)